Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2310852121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416678

RESUMO

Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Enterococcus/genética , Antibacterianos/farmacologia , Enterococcus faecium/genética , Enterococcus faecalis/genética , Filogenia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
2.
Water Res ; 258: 121764, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761593

RESUMO

Wastewater treatment plants (WWTPs) have been recognized as one of the major potential sources of the spread of airborne pathogenic microorganisms under the global pandemic of COVID-19. The differences in research regions, wastewater treatment processes, environmental conditions, and other aspects in the existing case studies have caused some confusion in the understanding of bioaerosol pollution characteristics. In this study, we integrated and analyzed data from field sampling and performed a systematic literature search to determine the abundance of airborne microorganisms in 13 countries and 37 cities across four continents (Asia, Europe, North America, and Africa). We analyzed the concentrations of bioaerosols, the core composition, global diversity, determinants, and potential risks of airborne pathogen communities in WWTPs. Our findings showed that the culturable bioaerosol concentrations of global WWTPs are 102-105 CFU/m3. Three core bacterial pathogens, namely Bacillus, Acinetobacter, and Pseudomonas, as well as two core fungal pathogens, Cladosporium and Aspergillus, were identified in the air across global WWTPs. WWTPs have unique core pathogenic communities and distinct continental divergence. The sources of airborne microorganisms (wastewater) and environmental variables (relative humidity and air contaminants) have impacts on the distribution of airborne pathogens. Potential health risks are associated with the core airborne pathogens in WWTPs. Our study showed the specificity, multifactorial influences, and potential pathogenicity of airborne pathogenic communities in WWTPs. Our findings can improve the understanding of the global diversity and biogeography of airborne pathogens in WWTPs, guiding risk assessment and control strategies for such pathogens. Furthermore, they provide a theoretical basis for safeguarding the health of WWTP workers and ensuring regional ecological security.


Assuntos
Microbiologia do Ar , Bactérias , Fungos , Águas Residuárias , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Eliminação de Resíduos Líquidos , SARS-CoV-2 , COVID-19 , Monitoramento Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA