Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
FASEB J ; 37(2): e22729, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583688

RESUMO

Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Glutationa/metabolismo , Oxirredução , Oxirredutases/metabolismo , Replicação Viral , Processamento de Proteína Pós-Traducional
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256082

RESUMO

Glutaredoxin 1 (Grx1) is an essential enzyme that regulates redox signal transduction and repairs protein oxidation by reversing S-glutathionylation, an oxidative modification of protein cysteine residues. Grx1 removes glutathione from proteins to restore their reduced state (protein-SH) and regulate protein-SSG levels in redox signaling networks. Thus, it can exert an influence on the development of cancer. To further investigate this problem, we performed an analysis of Grx1 expression in colon adenocarcinoma samples from the Polish population of patients with primary colon adenocarcinoma (stages I and II of colon cancer) and those with regional lymph node metastasis (stage III of colon cancer). Our study revealed a significant correlation between the expression of Grx1 protein through immunohistochemical analysis and various clinical characteristics of patients, such as histological grade, depth of invasion, angioinvasion, staging, regional lymph node invasion, and PCNA expression. It was found that almost 88% of patients with stage I had high levels of Grx1 expression, while only 1% of patients with stage III exhibited high levels of Grx1 protein expression. Furthermore, the study discovered that high levels of Grx1 expression were present in samples of colon mucosa without any pathological changes. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western blot.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Glutarredoxinas , Humanos , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Glutarredoxinas/genética , Prognóstico
3.
J Surg Res ; 280: 429-439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049244

RESUMO

INTRODUCTION: Hypoxia-inducible factor (HIF) 1α is essential for the pathogenesis of necrotizing enterocolitis (NEC). HIF-1α is stabilized by glutaredoxin-1 (Grx1) deletion. The precise role of HIF-1α in the intestinal microcirculation in NEC is not well defined. We aimed to determine the role of HIF-1α in the regulation of the intestinal microcirculation during the development of NEC. METHODS: Experimental NEC was induced in full-term C57BL/6 mice and Grx1-/- pups through the formula gavage and hypoxia technique. HIF-1α signaling was blocked using the HIF-1α inhibitor, YC-1 [3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole]. Intestinal tissues were collected at predetermined time points for the assessment of the intestinal microcirculation and HIF-1α activity and signaling. RESULTS: We found that NEC induction impaired the intestinal microcirculation, but the impairment of the intestinal blood flow and capillary density was ameliorated in Grx1-/- mice. This amelioration was associated with tripeptide glutathione-protein adducts in the intestinal tissue. Grx1 ablation also promoted vascular endothelial growth factor A production in the intestinal tissue. This intestinal microvascular improvement was not found in HIF-1α-inhibited mice, suggesting that HIF-1α was involved in the intestinal microcirculatory perfusion. CONCLUSIONS: The current data demonstrated that HIF-1α signaling is involved in the intestinal microvascular modification during the pathogenesis of NEC, suggesting that targeting HIF-1α might be a promising strategy for NEC treatment.


Assuntos
Enterocolite Necrosante , Animais , Camundongos , Enterocolite Necrosante/metabolismo , Glutarredoxinas/metabolismo , Glutationa , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Indazóis , Camundongos Endogâmicos C57BL , Microcirculação , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Cell Biol Int ; 46(11): 1886-1899, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35870170

RESUMO

The pathogenesis of necrotizing enterocolitis (NEC) is severe inflammatory injury in preterm infants, which resulted from macrophage polarization. Nuclear factor-κB (NF-κB) is implicated to be involved in macrophage polarization. We here evaluated the essential role of NF-κB in macrophage polarization in NEC in human samples from neonates with NEC and the mouse experimental NEC model. Enhanced intestinal macrophage (IM) infiltration was presented in human neonates with NEC, the majority of which were M1 macrophages. Meanwhile, NF-κB was activated in the IMs in human NEC samples. NF-κB inhibition by BAY promoted the M1 to M2 macrophage polarization. Furthermore, glutaredoxin-1 (Grx1) deficiency promoted M2 polarization via NF-κB inactivation from the lipopolysaccharide-induced proinflammatory macrophages. The IMs isolated from Grx1- / - mice presented with decreases in total numbers and less macrophage differentiation. Grx1- / - derived IM were effective in the increased survival in experimental NEC through inflammation blocking. Our study provides evidence that NF-κB inactivation by Grx1 depletion contributed to the alleviation of NEC via inhibiting M1 macrophage polarization. The modulation to alternative macrophages in the intestines may provide a promising benefits for NEC treatment.


Assuntos
Enterocolite Necrosante , NF-kappa B , Animais , Modelos Animais de Doenças , Enterocolite Necrosante/patologia , Glutarredoxinas , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Camundongos
5.
FASEB J ; 34(4): 5827-5837, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141127

RESUMO

Reactive oxygen species (ROS) increase during adipogenesis and in obesity. Oxidants react with cysteine residues of proteins to form glutathione (GSH) adducts, S-glutathionylation, that are selectively removed by glutaredoxin-1 (Glrx). We have previously reported that Glrx knockout mice had increased protein S-glutathionylation and developed obesity by an unknown mechanism. In this study, we demonstrated that 3T3L1 adipocytes differentiation increased ROS and protein S-glutathionylation. Glrx ablation elevated protein S-glutathionylation and lipid content in 3T3L1 cells. Glrx replenishment decreased the lipid content of Glrx KO 3T3L1 cells. Glrx KO also increased protein expression and protein S-glutathionylation of the adipogenic transcription factor CCAAT enhancer-binding protein (C/EBP) ß. Protein S-glutathionylation decreased the interaction of C/EBPß and protein inhibitor of activated STAT (PIAS) 1, a small ubiquitin-related modifier E3 ligase that facilitates C/EBPß degradation. Experiments with truncated mutant C/EBPß demonstrated that PIAS1 interacted with the liver-enriched inhibitory protein (LIP) region of C/EBPß. Furthermore, mass spectrometry analysis identified protein S-glutathionylation of Cys201 and Cys296 in the LIP region of C/EBPß. The C201S, C296S double-mutant C/EBPß prevented protein S-glutathionylation and preserved the interaction with PIAS1. In summary, Glrx ablation stimulated 3T3L1 cell differentiation and adipogenesis via increased protein S-glutathionylation of C/EBPß, stabilizing and increasing C/EBPß protein levels.


Assuntos
Adipócitos/citologia , Adipogenia , Proteína beta Intensificadora de Ligação a CCAAT/química , Regulação da Expressão Gênica , Glutarredoxinas/fisiologia , Glutationa/metabolismo , Proteína S/química , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Camundongos , Camundongos Knockout , Processamento de Proteína Pós-Traducional
6.
Eur J Immunol ; 49(5): 709-723, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30802940

RESUMO

Antioxidant systems maintain cellular redox homeostasis. The thioredoxin-1 (Trx1) and the glutathione (GSH)/glutaredoxin-1 (Grx1) systems are key players in preserving cytosolic redox balance. In fact, T lymphocytes critically rely on reducing equivalents from the Trx1 system for DNA biosynthesis during metabolic reprogramming upon activation. We here show that the Trx1 system is also indispensable for development and functionality of marginal zone (MZ) B cells and B1 cells in mice. In contrast, development of conventional B cells, follicular B-cell homeostasis, germinal center reactions, and antibody responses are redundantly sustained by both antioxidant pathways. Proliferating B2 cells lacking Txnrd1 have increased glutathione (GSH) levels and upregulated cytosolic Grx1, which is barely detectable in expanding thymocytes. These results suggest that the redox capacity driving proliferation is more robust and flexible in B cells than in T cells, which may have profound implications for the therapy of B and T-cell neoplasms.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Glutarredoxinas/genética , Tiorredoxinas/genética , Animais , Linfócitos B/citologia , Biomarcadores , Proliferação de Células/genética , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Glutarredoxinas/metabolismo , Camundongos , Camundongos Transgênicos , Tiorredoxinas/metabolismo
7.
Mov Disord ; 35(10): 1843-1853, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32618039

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by a severe loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Perturbation of protein thiol redox homeostasis has been shown to play a role in the dysregulation of cell death and cell survival signaling pathways in these neurons. Glutaredoxin 1 (Grx1) is a thiol/disulfide oxidoreductase that catalyzes the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis. OBJECTIVES: We evaluated if the downregulation of Grx1 could lead to dopaminergic degeneration and PD-relevant motor deficits in mice. METHODS: Grx1 was downregulated unilaterally through viral vector-mediated transduction of short hairpin RNA against Grx1 into the SNpc. Behavioral assessment was performed through rotarod and elevated body swing test. Stereological analysis of tyrosine hydroxylase-positive and Nissl-positive neurons was carried out to evaluate neurodegeneration. RESULTS: Downregulation of Grx1 resulted in contralateral bias of elevated body swing and reduced latency to fall off, accelerating rotarod. This was accompanied by a loss of tyrosine hydroxylase-positive neurons in the SNpc and their DA projections in the striatum. Furthermore, there was a loss Nissl-positive neurons in the SNpc, indicating cell death. This was selective to the SNpc neurons because DA neurons in the ventral tegmental area were unaffected akin to that seen in human PD. Furthermore, Grx1 mRNA expression was substantially decreased in the SNpc from PD patients. CONCLUSIONS: Our study indicates that Grx1 is critical for the survival of SNpc DA neurons and that it is downregulated in human PD. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Glutarredoxinas , Substância Negra , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Camundongos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(21): 6011-6, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162359

RESUMO

Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys(520) (mouse Cys(533)). In addition, an HIF-1α Cys(520) serine mutant is resistant to 2-AAPA-induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys(520) promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles.


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Membro Posterior/irrigação sanguínea , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Animais , Hipóxia Celular , Glutarredoxinas/genética , Células HEK293 , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/genética , Isquemia/patologia , Camundongos , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estabilidade Proteica , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
9.
J Proteome Res ; 17(3): 1091-1100, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356545

RESUMO

Glutaredoxin-1 (Grx1) catalyzes deglutathionylation with glutathione as a cofactor. Accumulating evidence indicates important roles for Grx1 and S-glutathionylation in the aging process; however, further exploration of Grx1-regulated cellular processes is important to understand the functions of Grx1 in aging. In the present study, we constructed stable Grx1 knockdown or overexpression human cell lines. Grx1 silencing significantly decreased the cellular ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) (GSH/GSSG ratio), resulting in excessive reactive oxygen species (ROS) accumulation, whereas Grx1 overexpression decreased cellular ROS levels. Grx1 silencing also increased glutathionylation of DJ-1 and HSP60, contributing to decreased mitochondrial spare respiration capacity and ATP production. We applied quantitative proteomics to identify differentially expressed proteins between Grx1 knockdown and control cells and showed that Grx1 silencing inactivated DNA replication and damage repair pathways. p53 signaling was activated by Grx1 silencing, which inhibited the CDK4-mediated G1-S transition, resulting in G1 phase cell-cycle arrest and cell senescence, a known hallmark of aging. Taken together, our results indicate that Grx1 regulates DNA replication and damage repair processes and is a potential therapeutic target for aging-related diseases.


Assuntos
Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Glutarredoxinas/genética , Proteoma/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Regulação da Expressão Gênica , Glutarredoxinas/antagonistas & inibidores , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Peróxido de Hidrogênio/farmacologia , Metaboloma/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Proteoma/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
10.
Cell Physiol Biochem ; 41(1): 252-264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214840

RESUMO

BACKGROUND: The protein transduction domain (PTD) enables therapeutic proteins to directly penetrate the membranes of cells and tissues, and has been increasingly utilized. Glutaredoxin-1 (GRX-1) is an endogenous antioxidant enzyme involved in the cellular redox homeostasis system. In this study, we investigated whether PEP-1-GRX-1, a fusion protein of GRX-1 and PEP-1 peptide, a PTD, could suppress catabolic responses in primary human articular chondrocytes and a mouse carrageenan-induced paw edema model. METHODS: Human articular chondrocytes were isolated enzymatically from articular cartilage and cultured in a monolayer. The transduction efficiency of PEP-1-GRX-1 into articular chondrocytes was measured by western blot and immunohistochemistry. The effects of PEP-1-GRX-1 on matrix metalloproteinases (MMPs) and catabolic factor expression in interleukin (IL)-1ß- and lipopolysaccharide (LPS)-treated chondrocytes were analyzed by real-time quantitative reverse transcription-polymerase chain reaction and western blot. The effect of PEP-1-GRX1 on the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) signaling pathway were also analyzed by western blot. Finally, the inhibitory effect of PEP-1-GRX-1 on MMP-13 production was measured in vivo in a mouse carrageenan-induced paw edema model. RESULTS: PEP-1-GRX-1 significantly penetrated into human chondrocytes and mouse cartilage, whereas GRX-1 did not. PEP-1-GRX-1 significantly suppressed MMP-13 expression and nitric oxide (NO) production in LPS-stimulated chondrocytes, and NO production in IL-1ß-stimulated chondrocytes, compared with GRX-1. In addition, PEP-1-GRX-1 decreased IL-1ß- and LPS-induced activation of MAPK and NF-κB. In the mouse model of carrageenan-induced paw edema, PEP-1-GRX-1 significantly suppressed carrageenan-induced MMP-13 production as well as paw edema. CONCLUSION: These results demonstrate that PEP-1-GRX-1 can be transduced efficiently in vitro and in vivo into human chondrocytes and mouse cartilage tissue and downregulate catabolic responses in chondrocytes by inhibiting the MAPK and NF-κB pathway. PEP-1-GRX-1 thus has the potential to reduce catabolic responses in chondrocytes and cartilage.


Assuntos
Cartilagem Articular/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Óxido Nítrico/metabolismo , Animais , Carragenina/toxicidade , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas , Cisteamina/análogos & derivados , Cisteamina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-1beta/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos
11.
Exp Eye Res ; 165: 125-135, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986146

RESUMO

The retina is prone to be damaged by oxidative stress (OS), owing to its constant exposure to light, high rate of oxygen consumption and high membrane lipid content. Lipid peroxidation in aging human retina has been shown by biochemical means. However, information on the cellular sites of OS and antioxidant responses in aging human retina remains limited. Here, we show distribution of immunoreactivity (IR) to a marker of lipid peroxidation (4-hydroxy 2-nonenal [HNE] and antioxidant enzymes involved in counteracting lipid peroxidation (glutathione S-transferase-π1 and glutarexoxin-1) in donor human retinas at different ages (35-91 years; N = 24). Initially, HNE-IR was present in few macular cone outer segments (COS, sixth decade). With aging, IR appeared in many COS and peaked at ninth decade (14 vs 62 per 3850 µm2 area between 6 and 9 decade; p < 0.001) in the parafovea then seen elsewhere (perifoveal, mid-peripheral and nasal). IR was seen in the parafovea of all retinas, whereas it was present in 8/24 of perifoveal and 6/24 of mid-peripheral retinas, indicating that the parafovea is susceptible to undergo lipid peroxidation. Foveolar COS were immunonegative until 81 years, which developed IR later (>83 years). IR to glutathione S-transferase-π1 was moderate until eight decade and then showed a decrease in photoreceptor cells between ninth and tenth decade, while glutaredoxin-1 maintained a steady expression with aging. Damaged COS were present in aged retinas, and inner segments and photoreceptor nuclei also showed some degree of alterations. Although there was increased lipid peroxidation with aging, cone death was minimal in those retinas. The two antioxidant enzymes studied here, may play a role in protecting photoreceptors against OS with advanced aging.


Assuntos
Envelhecimento/imunologia , Aldeídos/metabolismo , Retina/metabolismo , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Células Fotorreceptoras Retinianas Cones/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo
12.
Int J Mol Sci ; 17(11)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27827892

RESUMO

Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage.


Assuntos
Antioxidantes/farmacologia , Benzofuranos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/efeitos dos fármacos , Glutarredoxinas/genética , Peróxido de Hidrogênio/antagonistas & inibidores , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feto , Regulação da Expressão Gênica , Glutarredoxinas/antagonistas & inibidores , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Fatores de Tempo
13.
Biochim Biophys Acta ; 1842(1): 116-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184606

RESUMO

Down Syndrome is the most common chromosomal disease and is also known for its decreased incidence of solid tumors and its progeroid phenotype. Cellular and systemic oxidative stress has been considered as one of the Down Syndrome phenotype causes. We correlated, in a preliminary study, the fibroblast proliferation rate and different cell proliferation key regulators, like Rcan1 and the telomere length from Down Syndrome fetuses, with their oxidative stress profile and the Ribonucleic acid and protein expression of the main antioxidant enzymes together with their activity. Increased oxidized glutathione/glutathione ratio and high peroxide production were found in our cell model. These results correlated with a distorted antioxidant shield. The messenger RNA (SOD1) and protein levels of copper/zinc superoxide dismutase were increased together with a decreased mRNA expression and protein levels of glutathione peroxidase (GPx). As a consequence the [Cu/ZnSOD/(catalase+GPx)] activity ratio increases which explains the oxidative stress generated in the cell model. In addition, the expression of thioredoxin 1 and glutaredoxin 1 is decreased. The results obtained show a decreased antioxidant phenotype that correlates with increased levels of Regulator of calcineurin 1 and attrition of telomeres, both related to oxidative stress and cell cycle impairment. Our preliminary results may explain the proneness to a progeroid phenotype.


Assuntos
Síndrome de Down/metabolismo , Fibroblastos/metabolismo , Estresse Oxidativo/genética , Pele/metabolismo , Catalase/genética , Catalase/metabolismo , Proliferação de Células , Síndrome de Down/genética , Síndrome de Down/patologia , Feminino , Feto , Fibroblastos/patologia , Regulação da Expressão Gênica , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Cultura Primária de Células , Transdução de Sinais , Pele/patologia , Superóxido Dismutase , Superóxido Dismutase-1 , Telômero/genética , Telômero/metabolismo , Telômero/patologia , Homeostase do Telômero , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
Mol Ther Methods Clin Dev ; 32(1): 101214, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38496303

RESUMO

Inducible nitric oxide synthase (iNOS), regulated by nuclear factor kappa B (NF-κB), is crucial for intestinal inflammation and barrier injury in the progression of necrotizing enterocolitis (NEC). The NF-κB pathway is inhibited by S-glutathionylation of inhibitory κB kinase ß (IKKß), which can be restored by glutaredoxin-1 (Grx1). Thus, we aim to explore the role of Grx1 in experimental NEC. Wild-type (WT) and Grx1-knockout (Grx1-/-) mice were treated with an NEC-inducing regimen. Primary intestinal epithelial cells (IECs) were subjected to LPS treatment. The production of iNOS, NO, and inflammation injuries were assessed. NF-κB and involved signaling pathways were also explored. The severity of NEC was attenuated in Grx1-/- mice. Grx1 ablation promoted IKKß glutathionylation, NF-κB inactivation, and decreased iNOS, NO, and O2·- production in NEC mice. Furthermore, Grx1 ablation restrained proinflammatory cytokines and cell apoptosis, ameliorated intestinal barrier damage, and promoted proliferation in NEC mice. Grx1 ablation protected NEC through iNOS and NO inhibition, which related to S-glutathionylation of IKKß to inhibit NF-κB signaling. Grx1-related signaling pathways provide a new therapeutic target for NEC.

15.
J Mol Cell Cardiol ; 61: 94-101, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23727392

RESUMO

By the time it was appreciated that the positive inotropic effect of cardiac glycosides is due to inhibition of the membrane Na(+)-K(+) pump, glycosides had been used for treatment of heart failure on an empiric basis for ~200 years. The subsequent documentation of their lack of clinical efficacy and possible harmful effect largely coincided with the discovery that a raised Na(+) concentration in cardiac myocytes plays an important role in the electromechanical phenotype of heart failure syndromes. Consistent with this, efficacious pharmacological treatments for heart failure have been found to stimulate the Na(+)-K(+) pump, effectively the only export route for intracellular Na(+) in the heart failure. A paradigm has emerged that implicates pump inhibition in the raised Na(+) levels in heart failure. It invokes protein kinase-dependent activation of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) and glutathionylation, a reversible oxidative modification, of the Na(+)-K(+) pump molecular complex that inhibits its activity. Since treatments of proven efficacy reverse the oxidative Na(+)-K(+) pump inhibition, the pump retains its status as a key pharmacological target in heart failure. Its role as a target is well integrated with the paradigms of neurohormonal abnormalities, raised myocardial oxidative stress and energy deficiency implicated in the pathophysiology of the failing heart. We propose that targeting oxidative inhibition of the pump is useful for the exploration of future treatment strategies. This article is part of a Special Issue entitled "Na(+)Regulation in Cardiac Myocytes".


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , ATPase Trocadora de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/enzimologia , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Oxirredução , Fosfoproteínas/química , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
16.
J Cell Biochem ; 114(9): 1962-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23554102

RESUMO

Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.


Assuntos
Glutationa/metabolismo , Animais , Biotina/metabolismo , Glutarredoxinas/metabolismo , Humanos , Oxirredução , Compostos de Sulfidrila/metabolismo
17.
Biochem Biophys Res Commun ; 439(4): 517-21, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24025674

RESUMO

We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.


Assuntos
Técnicas Biossensoriais , Glutarredoxinas/química , Luz , Animais , Células CHO , Cricetinae , Cricetulus , Citoplasma/metabolismo , Citosol/metabolismo , Dissulfetos/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Oxirredução , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Compostos de Sulfidrila/metabolismo
18.
Atherosclerosis ; 387: 117383, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38061313

RESUMO

BACKGROUND AND AIMS: Deficiency in the thiol transferase glutaredoxin 1 (Grx1) in aging mice promotes, in a sexually dimorphic manner, dysregulation of macrophages and atherogenesis. However, the underlying mechanisms are not known. Here we tested the hypothesis that macrophage-restricted overexpression of Grx1 protects atherosclerosis-prone mice against macrophage reprogramming and dysfunction induced by a high-calorie diet (HCD) and thereby reduces the severity of atherosclerosis. METHODS: We generated lentiviral vectors carrying cluster of differentiation 68 (CD68) promoter-driven enhanced green fluorescent protein (EGFP) or Grx1 constructs and conducted bone marrow (BM) transplantation studies to overexpress Grx1 in a macrophage-specific manner in male and female atherosclerosis-prone LDLR-/- mice, and fed these mice a HCD to induce atherogenesis. Atherosclerotic lesion size was determined in both the aortic root and the aorta. We isolated BM-derived macrophages (BMDM) to assess protein S-glutathionylation levels and loss of mitogen-activated protein kinase phosphatase 1 (MKP-1) activity as measures of HCD-induced thiol oxidative stress. We also conducted gene profiling on these BMDM to determine the impact of Grx1 activity on HCD-induced macrophage reprogramming. RESULTS: Overexpression of Grx1 protected macrophages against HCD-induced protein S-glutathionylation, reduced monocyte chemotaxis in vivo, limited macrophage recruitment into atherosclerotic lesions, and was sufficient to reduce the severity of atherogenesis in both male and female mice. Gene profiling revealed major sex differences in the transcriptional reprogramming of macrophages induced by HCD feeding, but Grx1 overexpression only partially reversed HCD-induced transcriptional reprogramming of macrophages. CONCLUSIONS: Macrophage Grx1 plays a major role in protecting mice atherosclerosis mainly by maintaining the thiol redox state of the macrophage proteome and preventing macrophage dysfunction.


Assuntos
Aterosclerose , Glutarredoxinas , Animais , Feminino , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nutrientes , Compostos de Sulfidrila
19.
J Interferon Cytokine Res ; 43(5): 216-228, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37103522

RESUMO

In neonates, necrotizing enterocolitis (NEC) is a serious condition involving oxidative stress and inflammation. Remote ischemic conditioning (RIC) is a potentially useful technique to protect distant organs from the damage induced by ischemia. RIC has been verified as effective to protect against NEC; however, its mechanism is unclear. This study aimed to assess the mechanism and efficacy of RIC to treat experimental NEC in mice. Between postnatal day (P) 5 and P9, we induced NEC in C57BL/6 mice and Grx1-/- mice. Intermittent occlusion of the blood flow to the right hind limb for 4 cycles of 5 min ischemia followed by 5 min reperfusion during NEC induction on P6 and P8 was used to apply RIC. We sacrificed the mice on p9 and evaluated oxidative stress, inflammatory cytokines, proliferation, apoptosis, and PI3K/Akt/mTOR signal pathway in mice ileal tissue. RIC decreased intestinal injury and prolonged survival in NEC pups. RIC significantly inhibited inflammatory, attenuated oxidative stress, reduced apoptosis, promoted proliferation, and activated PI3K/Akt/mTOR in vivo. RIC activates the PI3K/Akt/mTOR signaling pathway to control oxidative stress and inflammation. RIC might provide a new therapeutic strategy for NEC.


Assuntos
Enterocolite Necrosante , Animais , Camundongos , Enterocolite Necrosante/prevenção & controle , Enterocolite Necrosante/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Isquemia , Inflamação/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Oxirredução , Modelos Animais de Doenças
20.
J Pharm Anal ; 13(12): 1548-1561, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223455

RESUMO

Excessive N-acetyl-p-benzoquinone imine (NAPQI) formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen (APAP) overdose caused acute liver failure (ALF). S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity. Glutaredoxin-1 (Glrx1), a glutathione-specific thioltransferase, is a primary enzyme to catalyze deglutathionylation. The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP. The Glrx1 knockout mice (Glrx1-/-) and liver-specific overexpression of Glrx1 (AAV8-Glrx1) mice were produced and underwent APAP-induced ALF. Pirfenidone (PFD), a potential inducer of Glrx1, was administrated preceding APAP to assess its protective effects. Our results revealed that the hepatic total protein S-glutathionylation (PSSG) increased and the Glrx1 level reduced in mice after APAP toxicity. Glrx1-/- mice were more sensitive to APAP overdose, with higher oxidative stress and more toxic metabolites of APAP. This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p450 3a11 (Cyp3a11), which likely increased the activity of Cyp3a11. Conversely, AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11, which reduced the toxic metabolites of APAP and oxidative stress. PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress. We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose. Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA