Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2320012121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809713

RESUMO

Rechargeable sodium-oxygen (Na-O2) battery is deemed as a promising high-energy storage device due to the abundant sodium resources and high theoretical energy density (1,108 Wh kg-1). A series of quasisolid electrolytes are constantly being designed to restrain the dendrites growth, the volatile and leaking risks of liquid electrolytes due to the open system of Na-O2 batteries. However, the ticklish problem about low operating current density for quasisolid electrolytes still hasn't been conquered. Herein, we report a rechargeable Na-O2 battery with polyvinylidene fluoride-hexafluoropropylene recombination Nafion (PVDF-HFP@Nafion) based quasisolid polymer electrolyte (QPE) and MXene-based Na anode with gradient sodiophilic structure (M-GSS/Na). QPE displays good flame resistance, locking liquid and hydrophobic properties. The introduction of Nafion can lead to a high Na+ migration number (tNa+ = 0.68) by blocking the motion of anion and promote the formation of NaF-rich solid electrolyte interphase, resulting in excellent cycling stability at relatively high current density under quasisolid environment. In the meantime, the M-GSS/Na anode exhibits excellent dendrite inhibition ability and cycling stability. Therefore, with the synergistic effect of QPE and M-GSS/Na, constructed Na-O2 batteries run more stably and exhibit a low potential gap (0.166 V) after an initial 80 cycles at 1,000 mA g-1 and 1,000 mAh g-1. This work provides the reference basis for building quasisolid state Na-O2 batteries with long-term cycling stability.

2.
Nano Lett ; 24(3): 881-889, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198246

RESUMO

Cellulose nanofiber (CNF) possesses excellent intrinsic properties, and many CNF-based high-performance structural and functional materials have been developed recently. However, the coordination of the mechanical properties and functionality is still a considerable challenge. Here, a CNF-based structural material is developed by a bioinspired gradient structure design using hollow magnetite nanoparticles and the phosphorylation-modified CNF as building blocks, which simultaneously achieves a superior mechanical performance and electromagnetic wave absorption (EMA) ability. Benefiting from the gradient design, the flexural strength of the structural material reached ∼205 MPa. Meanwhile, gradient design improves impedance matching, contributing to the high EMA ability (-59.5 dB) and wide effective absorption width (5.20 GHz). Besides, a low coefficient of thermal expansion and stable storage modulus was demonstrated as the temperature changes. The excellent mechanical, thermal, and EMA performance exhibited great potential for application in stealth equipment and electromagnetic interference protecting electronic packaging materials.

3.
Small ; 20(24): e2309329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221705

RESUMO

Azobenzene, which activates its geometric and chemical structure under light stimulation enables noninvasive control of mass transport in many processes including membrane separations. However, producing azobenzene-decorated channels that have precise size tunability and favorable pore wall chemistry allowing fast and durable permeation to solvent molecules, remains a great challenge. Herein, an advanced membrane that comprises geometry and polarity gradients within covalent organic framework (COF) nanochannels utilizing photoisomerization of azobenzene groups is reported. Such functional variations afford reduced interfacial transfer resistance and enhanced solvent-philic pore channels, thus creating a fast solvent transport pathway without compromising selectivity. Moreover, the membrane sets up a densely covered defense layer to prevent foulant adhesion and the accumulation of cake layer, contributing to enhanced antifouling resistance to organic foulants, and a high recovery rate of solvent permeance. More importantly, the solvent permeance displays a negligible decline throughout the long-term filtration for over 40 days. This work reports the geometry and polarity gradients in COF channels induced by the conformation change of branched azobenzene groups and demonstrates the strong capability of this conformation change in realizing fast and durable molecular separations.

4.
Small ; : e2309646, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38676330

RESUMO

The long-term stability of perovskite solar cells (PSCs) is still challenging for commercialization and mainly linked to the life span of perovskite films. Herein, a spontaneous compositional-interfacial co-modification strategy is developed based on the ion exchange reaction by introducing ammonium hexafluorophosphate (NH4PF6) into antisolvent to form gradient structures through a simple one-step solvent engineering. With the assistance of the ion exchange reaction, NH4PF6 forms a multifunctional structure to protect perovskite films from both internal and external factors for the exceptionally long-term stability of photovoltaics. The reason for this is linked to the high hydrophobicity of NH4PF6 for preventing H2O invasion, suppressing ion migration by forming hydrogen bonding, and reducing perovskite defects. The resulting unencapsulated devices show exceptionally long-term stability under standardized the International Summit on Organic Photovoltaic Stability (ISOS) protocols, with over 94%, 81%, and 83% retained power conversion efficiencies after aging tests under N2 (ISOS-D-1I), ambient air (ISOS-D-1), and 85 °C (ISOS-D-2I) for 14016, 2500, and 1248 h, respectively. These performances compare well with the state-of-the-art stability of inverted PSCs. Further investigations are conducted to study the evolution of macroscopic morphology and microscopic crystal structure in aged perovskite films, aiming to provide evidence supporting the aforementioned improvements in stability.

5.
Small ; 20(21): e2309931, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38102094

RESUMO

Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m-3), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change. Moreover, the ionogel sensor exhibits an ultra-fast response time (60 ms) comparable to skin, an incredibly low detection limit (1 kPa), and an exceptionally wide detection range (1 kPa-1 MPa). The exceptional gradient ionogel material holds tremendous promise for applications in the field of smart sensors, presenting a distinct strategy for fabricating flexible gradient materials.

6.
Small ; : e2402925, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874069

RESUMO

Aqueous Zn metal batteries are attracting tremendous interest as promising energy storage systems due to their intrinsic safety and cost-effectiveness. Nevertheless, the reversibility of Zn metal anodes (ZMAs) is hindered by water-induced parasitic reactions and dendrite growth. Herein, a novel hydrated eutectic electrolyte (HEE) consisting of Zn(BF4)2·xH2O and sulfolane (SL) is developed to prevent the side reactions and achieve the outstanding cyclability of ZMAs. The strong coordination between Zn2+ and SL triggers the eutectic feature, enabling the low-temperature availability of HEEs. The restriction of BF4 - hydrolysis in the eutectic system can realize favorable compatibility between Zn(BF4)2-based electrolyte and ZMAs. Besides, the newly-established solvation structure with the participation of SL, H2O, and BF4 -, can induce in situ formation of desirable SEI with gradient structure consisting of B,O-rich species, ZnS, and ZnF2, to offer satisfactory protection toward ZMAs. Consequently, the HEE allows the Zn||Zn symmetric cell to cycle over 1650 h at 2 mA cm-2 and 1 mA h cm-2. Moreover, the Zn||NH4V4O10 full batteries can deliver a prolonged lifespan for 1000 cycles with a high capacity retention of 83.4%. This work represents a feasible approach toward the elaborate design of advanced electrolyte systems for next-generation batteries.

7.
Small ; 20(27): e2311656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308144

RESUMO

Flexible actuators with excellent adaptability and interaction safety have a wide range of application prospects in many fields. However, current flexible actuators have problems such as fragility and poor actuating ability. Here, inspired by the features of nacre structure, a gradient structured flexible actuator is proposed with mechanical robustness and self-healing ability. By introducing dynamic boronic ester bonds at the interface between MXene nanosheets and epoxy natural rubber matrix, the resulting nanocomposites with ordered micro-nano structures exhibit excellent tensile strength (25.03 MPa) and satisfactory repair efficiency (81.2%). In addition, the gradient distribution structure of MXene nanosheets endows the actuator with stable photothermal conversion capability, which can quickly respond to near-infrared light stimulation. The interlayer dynamic covalent bond crosslinking enables good response speed after multiple bending and is capable of functional self-healing after damage. This work introduces gradient structure and dynamic covalent bonding into flexible actuators, which provides a reference for the fabrication of self-healing soft robots, wearable, and other healable functional materials.

8.
Small ; 20(26): e2309806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243852

RESUMO

The impedance matching and high loss capabilities of composites with homogeneous distribution are limited owing to high addition and lack of structural design. Developing composites with heterogeneous distribution can achieve strong and wide electromagnetic (EM) wave absorption. However, challenges such as complex design and unclear absorption mechanisms still exist. Herein, a novel composite with a heterogeneous distribution gradient is successfully constructed via MOF derivatives Co@ nitrogen-doped carbon (Co@NC) anchored on carbon foam (CF) matrix (MDCF). Notably, the concentration of MOF can easily control the gradient structure. In particular, the morphologies of MOF derivatives on the surface of CF undergo a transition from the collapse of the inner layer to the integrity of the outer layer, accompanied by a continuous reduction in the size of Co nanoparticles. Correspondingly, enhanced interface polarization from the core-shell of Co@NC and good impedance matching of MDCF can be obtained. The optimized MDCF exhibits the minimum reflection loss of -68.18 dB at 2.01 mm and effective absorption bandwidth covering the entire X-band. Moreover, MDCF exhibits lightweight characteristics, excellent compressive strength, and low radar cross-section reduction. This work highlights the immense potential of composites with heterogeneous distribution for achieving high-performance EM wave absorption.

9.
Chemistry ; 30(33): e202400515, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457259

RESUMO

Stimuli-responsive materials have recently gained significant attention in the field of soft robotics, sensors, and biomimetic devices. The most facile way for the fabrication of such materials remains to endow bilayer structures which are fabricated with the combination of active and passive layers. Although, easily fabricated, these structures suffer from the generation of stress points between connection areas. In this work we develop a method to create a thin film with controlled cross-link variation across its thickness. The cross-link gradient is achieved through polymerization induced diffusion of dithiol molecules in thiol-ene network. As a result, the film exhibits bending deformation upon illumination with light or exposure to a chemical solvent, thereby demonstrating dual responsiveness. Light actuation of the film is achieved via photothermal effects due to the incorporation of dye into the system which can absorb UV light and heat the network. While solvent induced actuation is due to anisotropic swelling. Furthermore, the straightforward fabrication procedure allows for the creation of more complex deformations by patterning the film using a photomask during photopolymerization.

10.
J Therm Spray Technol ; 30(1-2): 119-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624583

RESUMO

Owing to low-temperature deposition conditions and high deposition rate, cold spray offers unique advantages in manufacturing a wide variety of metallic and composite coatings including metal matrix composites produced from physically blended powders. One of the challenges of producing composite coatings using cold spray is the deviation of coatings composition from the blended feedstock powder composition. This is of utmost importance as it affects the composition and phase evolution of intermetallic forming coatings during post spray heat treatment. In this work, cold spray of composite Ni-Ti coatings and formation of intermetallics from post spray heat treatment were investigated as a first step to examine the potential of producing equiatomic bulk Ni-Ti by cold spray. Three different physically blended Ni and Ti powders mixtures were sprayed on titanium substrates to address the coating composition variation from the blended feedstock powder and study its influence on phase evolution during post spray heat treatment. High-density and well-dispersed composite coatings were achieved for each case. EDS analysis revealed as-sprayed coatings with 10.5, 35.9 and 56.9 at.% Ni (and with balanced Ti ratios) from the three powder mixtures. Annealing treatments were conducted at 400, 500 and 900 °C for 1 and 2 h and comparative studies of the intermetallic compound formations were carried out. Microstructural investigation showed that all three equilibrium intermetallics phases of binary Ni-Ti phase diagram (Ni3Ti, Ti2Ni and NiTi) formed in the two Ni-rich composite coatings with NiTi phase being maximum in the coating with the closest composition to equiatomic ratio while only Ti2Ni phase formed in the Ti-rich coating after annealing. Thermal etching analysis of coatings showed that NiTi phase forms with a gradient microstructure from Ti splats boundary toward the center of splats, which is attributed to the grain refinement of CS samples at splat boundary and intermetallic nucleation mechanism.

11.
Int J Biol Macromol ; 277(Pt 1): 134148, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059521

RESUMO

Severe fracture non-union often accompanied by damaged or even absent periosteum remains a significant challenge. This paper presents a novel tri-layer bionic periosteum with gradient structure and mineralized collagen (MC) mimics natural periosteum for in-situ repair and bone regeneration. The construct with ultrasonic polylactic acid as the loose outer fibrous layer (UPLA), poly(ε-caprolactone) as the intermediate barrier layer (PCL-M), and poly(ε-caprolactone)/MC as the inner osteoblastic layer (PM) was prepared. The physicochemical properties of layers were investigated. UPLA/PCL-M/PM exhibited a tensile strength (3.55 ± 0.23 MPa) close to that of natural periosteum and excellent adhesion between the layers. In vitro experiments demonstrated that all layers had no toxicity to cells. UPLA promoted inward growth of mouse fibroblasts. PCL-M with a uniform pore size (2.82 ± 0.05 µm) could achieve a barrier effect against fibroblasts according to the live/dead assay. Meanwhile, PM could effectively promote cell migration with high alkaline phosphatase expression and significant mineralization of the extracellular matrix. Besides, in vivo experiments showed that UPLA/PCL-M/PM significantly promoted the regeneration of bone and early angiogenesis. Therefore, this construct with gradient structure developed in this paper would have great application potential in the efficient and high-quality treatment of severe fractures with periosteal defects.

12.
Carbohydr Polym ; 329: 121777, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286548

RESUMO

Developing high-performance microwave absorption (MA) materials becomes an urgent concern in the field of electromagnetic protection. Constructing porous framework is an efficient approach to MA owing to the abilities of adjusting impedance matching and providing more reflection and scattering paths for electromagnetic waves. Herein, a cellulose nanofibril (CNF)/honeycomb-like carbon-shell encapsulated FeCoNi@C/carbon nanotube (CNT) composite aerogel was fabricated via a facile freeze-drying method. The super-lightweight composites showed a distinctive gradient structure for reflection and scattering inside aerogel pores, micrometer small pores, and nano-fillers on the pore walls. The composite aerogel showed an ideal minimum reflection loss (RLmin) of -43.6 dB and remarkable adjustable effective absorption bandwidth (EAB) of 12.18 GHz due to good impedance matching, unique gradient porous structure, and synergies of multiple loss mechanisms. Therefore, this work will provide a viable strategy to improve the MA capability of absorbers by taking full advantage of constructing gradient reflection and scattering porous structure.

13.
Med Eng Phys ; 128: 104173, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38789213

RESUMO

Mass transport properties within three-dimensional (3D) scaffold are essential for tissue regeneration, such as various fluid environmental cues influence mesenchymal stem cells differentiation. Recently, 3D printing has been emerging as a new technology for scaffold fabrication by controlling the scaffold pore geometry to affect cell growth environment. In this study, the flow field within scaffolds in a perfusion system was investigated with uniform structures, single gradient structures and complex gradient structures using computational fluid dynamics (CFD) method. The CFD results from those uniform structures indicate the fluid velocity and fluid shear stress within the scaffold structure increased as the filament diameter increasing, pore width decreasing, pore shape decreased from 90° to 15°, and layer configuration changing from lattice to stagger structure. By assembling those uniform structure as single gradient structures, it is noted that the fluid dynamic characterisation within the scaffold remains the same as the corresponding uniform structures. A complex gradient structure was designed to mimic natural osteochondral tissue by assembly the uniform structures of filament diameter, pore width, pore shape and layer configuration. The results show that the fluid velocity and fluid shear stress within the complex gradient structure distribute gradually increasing and their maximum magnitude were from 1.15 to 3.20 mm/s, and from 12 to 39 mPa, respectively. CFD technique allows the prediction of velocity and fluid shear stress within the designed 3D gradient scaffolds, which would be beneficial for the tissue scaffold development for interfacial tissue engineering in the future.


Assuntos
Hidrodinâmica , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Estresse Mecânico , Simulação por Computador
14.
J Colloid Interface Sci ; 662: 69-75, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335741

RESUMO

P2-type layered oxides for rechargeable sodium-ion batteries have drawn a lot of attention because of their excellent electrochemical performance. However, these types of cathodes usually suffer from poor cyclic stability. To overcome this disadvantage, in this work, novel ball-shaped concentration-gradient oxide Na0.67Ni0.17Co0.17Mn0.66O2 with P2 structure modified by Mn-rich surface is successfully prepared using co-precipitation method. The concentration of Mn increased from the inner core to the surface, endowing the material with an excellent cyclic stability. The cathode exhibits enhanced electrochemical properties than that of the sample synthesized by solid-state method and concentration-constant material. It shows 143.2 mAh/g initial discharge capacity and retains 131 mAh/g between 2 V and 4.5 V after 100 rounds. The significant improvement in the electrochemical properties of the sample benefits from the unique concentration-gradient structure, and the Mn-rich surface that effectively stabilizes the basic P2 structure. The relatively higher Ni content in the core leads to a slight improvement in the discharge capacity of the sample. This strategy may provide new insights for preparing layered cathodes for sodium-ion batteries with high electrochemical performance.

15.
Adv Mater ; : e2405183, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973222

RESUMO

Biological materials relying on hierarchically ordered architectures inspire the emergence of advanced composites with mutually exclusive mechanical properties, but the efficient topology optimization and large-scale manufacturing remain challenging. Herein, this work proposes a scalable bottom-up approach to fabricate a novel nacre-like cement-resin composite with gradient brick-and-mortar (BM) structure, and demonstrates a machine learning-assisted method to optimize the gradient structure. The fabricated gradient composite exhibits an extraordinary combination of high flexural strength, toughness, and impact resistance. Particularly, the toughness and impact resistance of such composite attractively surpass the cement counterparts by factors of approximately 700 and 600 times, and even outperform natural rocks, fiber-reinforced cement-based materials and even some alloys. The strengthening and toughening mechanisms are clarified as the regional-matrix densifying and crack-tip shielding effects caused by the gradient BM structure. The developed gradient composite not only endows a promising structural material for protective applications in harsh scenarios, but also paves a new way for biomimetic metamaterials designing.

16.
ACS Appl Mater Interfaces ; 16(24): 31209-31217, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38834935

RESUMO

Constructing a 1D/3D perovskite heterojunction has recently emerged as a prevalent approach for elevating the efficiency and stability of perovskite solar cells (PSCs), due to the excellent defect-passivation capacity and enhanced resistance to water and oxygen of 1D perovskite. However, the 1D perovskite commonly exhibits much poorer charge carrier transport ability when compared with its 3D counterpart. Tailoring the intrusion depth of a 1D perovskite into the 1D/3D heterojunction is thus of key importance for PSCs but remains a great challenge. We introduce herein a novel anion-regulation strategy that can effectively tune the intrusion behavior of 1D perovskite into 3D perovskite to form a 1D/3D heterojunction with gradual structure and gradient energy-level alignment. This gradual 1D/3D-perovskite interface leads to outstanding defect passivation performance, together with a desired balance between charge transport and moisture/oxygen blocking. Consequently, the PSCs with a 1D/3D perovskite heterojunction resulting from tetra-n-butylammonium acetate (TBAAc) treatment yield a remarkable enhancement in power conversion efficiency (PCE) from 18.4 to 20.1%. The unencapsulated device also demonstrates excellent stability and retains 90% of its initial PCE after 2400 h of storage in the air atmosphere with 30 ± 5% humidity at 25 ± 5 °C.

17.
Nanomicro Lett ; 16(1): 69, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175419

RESUMO

The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO2 nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation (21° s-1) and enhanced photothermal efficiency (increase by 3.7 °C s-1 under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca2+ endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity (gauge factor 3.94 within a wide strain range of 600%), fast response times (140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human-machine interactions.

18.
ACS Appl Mater Interfaces ; 16(7): 8378-8390, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326945

RESUMO

Slow healing at the tendon-bone interface is a prominent factor in the failure of tendon repair surgeries. The development of functional biomaterials with 3D gradient structures is urgently needed to improve tendon-bone integration. The crystalline form of hydroxyapatite (HAP) has a crucial impact on cell behavior, which directly influences protein adsorption, such as bone morphogenetic protein 2, the adhesion, proliferation, and osteogenic differentiation with cells. This work aimed to generate gradient mineral structures in situ by stabilizing calcium and phosphate ions using a polymer-induced liquid precursor process. To regulate the crystalline growth of HAP at the interface of ß-chitin, this work made use of the surface properties of the organic matrix found in cuttlefish bone. These techniques allowed us to prepare an organic-inorganic composite gradient scaffold comprising plate-like HAP mineralized in situ on the surface of the scaffold and fibrous HAP in the scaffold's interior. Organic-inorganic composite gradient materials are anticipated for use in tendon-bone healing produced via the in situ construction of gradient-distributed HAP mineralization layers having varying crystalline morphologies on chitin scaffolds that possess a three-dimensional bionic structure.


Assuntos
Durapatita , Osteogênese , Durapatita/química , Alicerces Teciduais/química , Quitina , Biônica , Engenharia Tecidual
19.
ACS Appl Mater Interfaces ; 16(32): 42468-42475, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39080261

RESUMO

In this study, the electric energy harvesting capability of the hierarchical pore gradient silica aerogel (HPSA) is demonstrated due to its unique porous structure and inherent hydroxyl groups on the surface. Taking advantage of the positively charged surface of unwashed HPSA credited by the preparation strategy, poly(4-styrene sulfonic acid) (PSS) can be spontaneously adsorbed onto unwashed HPSA and shows gradient distribution due to the pore-gradient structure of HPSA. By virtue of the gradient distribution and the stronger ionization of PSS, PSS-modified HPSA (PSS-HPSA) shows enhanced electricity generation performance from natural water evaporation with an average output voltage of 0.77 V on an individual device. The water evaporation-induced electricity property of PSS-HPSA can be maintained in the presence of a low concentration of salt. The desirable salt resistance capability benefits from the unique 3D hierarchical porous structure of HPSA which ensures rapid water replenishment so as to effectively avoid the salt accumulation. The HPSA-based devices with the advantages of unique porous structure, easy functionalization, good physicochemical stability, good salt resistance capability, and eco-friendliness show great potential as water evaporation-induced electricity generators.

20.
ACS Appl Mater Interfaces ; 16(7): 9264-9274, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329929

RESUMO

Polymer thin films with a cross-web gradient structure is a burgeoning area of research, having received more attention in the last two decades, for improvements in the performance and material properties. Such patterned films have been fabricated using several techniques, but in practice these techniques are non-scalable, material-dependent, wasteful, and not highly efficient. Slot die coating, a well-known scalable manufacturing process, is used to fabricate gradient polymer thin films which will be investigated herein. By incorporating slot die with the custom roll-to-roll imaging system, gradient thin films are successfully fabricated by forcing two fluidic materials into the slot die simultaneously and by manipulating the viscous, diffusive, and inertial forces. The materials will be allowed to intermix, with the aim of having approximately a 50% mix along the centerline of any two contiguous stripes. Moreover, several characterizations such as FTIR, UV-vis spectroscopy, and SEM are performed to assess the quality of the gradient polymer thin films. The gradient structure fabricated using functional and nonfunctional materials has successfully improved the functional properties compared to fully blended two materials. This work will provide an understanding of the mechanisms to obtain gradient polymer thin-film structures that exhibit the desired geometric structure and performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA