RESUMO
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
Assuntos
Domesticação , Fabaceae , Humanos , Grão Comestível/genética , Fabaceae/genética , Melhoramento Vegetal , Produtos Agrícolas/genéticaRESUMO
BACKGROUND: The protein-rich fractions of pulses and pseudocereals exhibit a well-balanced amino acid profile, particularly when combined in different portions, and are therefore high-value ingredients for the production of extruded snacks. However, the impact of a combination of pulses and pseudocereals on the physical and sensory qualities of extruded snacks has not been investigated up to now. Native or preconditioned protein isolates and concentrates from pulses - as single ingredients or in combination with protein-rich flours of pseudocereals - were analyzed regarding their thermal and functional properties in relation to extrusion characteristics. Low moisture extrusion cooking was used to investigate the impact of protein source (lentil, lupin, faba bean), pseudocereal source (quinoa, amaranth, buckwheat) and protein content (30%, 50%, 70%) on sectional expansion, specific hardness, density and sensory properties of the snacks. RESULTS: With increasing protein content from 30% to 50%, the sectional expansion decreased and the density and specific hardness of the extrudates increased, which could be counteracted by preconditioning of the protein-rich ingredients. Lupin protein-based extrudates exhibited satisfactory texture and sensory properties. Extruded mixtures of pulses and pseudocereals (70% protein) exhibited a smaller sectional expansion compared to pulses as single ingredients (30%, 50%), regardless of pseudocereal type. However, the texture and sensory properties of the extruded blends were satisfactory. CONCLUSIONS: We show for the first time that protein-rich fractions of pulses and pseudocereals can be processed into expanded snacks with favorable texture and nutritional properties such as increased protein contents (70%) and balanced amino acid profiles. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Manipulação de Alimentos , Lanches , Aminoácidos , Culinária , Farinha/análiseRESUMO
Grain legumes are nutritionally important components of smallholder farming systems in sub-Saharan Africa and Asia. Unfortunately, limited access to quality seed of improved varieties at affordable prices due to inadequate seed systems has reduced their contribution to improving nutrition and reducing poverty in these regions. This paper analyses four seed systems case studies: chickpea in Ethiopia and Myanmar; cowpea in Nigeria; and tropical grain legumes in Nigeria, Tanzania and Uganda highlighting outcomes, lessons learned, and the enabling factors which supported the successful innovations. All four case studies highlighted at least some of the following outcomes: increased adoption of improved varieties and area planted; increased productivity and income to farmers; improved market access and growth; and significant national economic benefits. Important lessons were learned including the value of small seed packets to reach many farmers; the value of innovative partnerships; capacity building of value chain actors; and continuity and coherence of funding through Tropical Legumes projects II and III and the recently funded Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project. Successful adoption of innovations depends not just on the right technologies but also on the enabling environment. The case studies clearly showed that market demand was correctly identified, establishment of successful partners and institutional linkages overcame constraints in production and delivery of improved seed to smallholders, and fostered conducive policies supported national seed systems. All were integral to seed system viability and sustainability. It is hoped that these examples will provide potential models for future grain legume seed systems efforts. In addition, the analysis identified a number of areas that require further research.
RESUMO
Stem growth habit is a key plant architecture trait determining yield potential in grain legumes, and the phenotypic change from the indeterminate stem growth habit of wild mungbeans (Vigna radiata) to the determinate stem growth habit of cultivated mungbeans is a critical domestication transition. Here we show that indeterminate stem growth in wild mungbean is modulated by a single gene, VrDet1, which encodes a signaling protein of shoot apical meristems. The transition from an indeterminate to a determinate stem growth habit was achieved by selection of two linked point mutations in two putative cis-regulatory elements, resulting in a significant reduction in gene expression. Both the wild-type nucleotides corresponding to the two point mutations were essential for VrDet1 function. In addition, two highly diverse haplotypes of Vrdet1 were found in cultivated mungbeans, suggesting dual domestication of Vrdet1. VrDet1 was orthologous to Dt1 in wild soybean and PvTFL1y in wild common bean, where multiple loss-of-function mutations altering the coding sequences of individual genes were selected to produce determinate stems in cultivated accessions. Interspecific comparison of these orthologs in the wild and cultivated accessions reveals the most conservative interspecific and intraspecific parallel domestication events with the broadest mutational spectrum of a domestication trait in leguminous crops. We also found that interspecifically and functionally conserved promoters possess cis-regulatory elements that are highly conserved in kind but greatly variable in number and order, demonstrating the evolutionary dynamics of regulatory sequences. This work provides insights into the origins of cultivated mungbean and exemplifies the conservativeness and plasticity of the domestication processes of related crops.
Assuntos
Produtos Agrícolas/genética , Domesticação , Fabaceae/genética , Mutação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Fabaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Haplótipos , Meristema/genética , Meristema/crescimento & desenvolvimento , Fenótipo , Análise de Sequência de DNA , Vigna/genética , Vigna/crescimento & desenvolvimentoRESUMO
During soil waterlogging, plants experience O2 deficits, elevated ethylene, and high CO2 in the root-zone. The effects on chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) of ethylene (2 µL L-1 ), CO2 (2-20% v/v) or deoxygenated stagnant solution were evaluated. Ethylene and high CO2 reduced root growth of both species, but O2 deficiency had the most damaging effect and especially so for chickpea. Chickpea suffered root tip death when in deoxygenated stagnant solution. High CO2 inhibited root respiration and reduced growth, whereas sugars accumulated in root tips, of both species. Gas-filled porosity of the basal portion of the primary root of faba bean (23%, v/v) was greater than for chickpea (10%), and internal O2 movement was more prominent in faba bean when in an O2 -free medium. Ethylene treatment increased the porosity of roots. The damaging effects of low O2 , such as death of root tips, resulted in poor recovery of root growth upon reaeration. In conclusion, ethylene and high CO2 partially inhibited root extension in both species, but low O2 in deoxygenated stagnant solution had the most damaging effect, even causing death of root tips in chickpea, which was more sensitive to the low O2 condition than faba bean.
Assuntos
Dióxido de Carbono/farmacologia , Cicer/metabolismo , Etilenos/farmacologia , Raízes de Plantas/metabolismo , Vicia faba/metabolismo , Cicer/efeitos dos fármacos , Cicer/crescimento & desenvolvimento , Oxigênio/metabolismo , Consumo de Oxigênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Vicia faba/efeitos dos fármacos , Vicia faba/crescimento & desenvolvimentoRESUMO
Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa.
Assuntos
Atrativos Sexuais/metabolismo , Tisanópteros/metabolismo , Vigna/parasitologia , Monoterpenos Acíclicos , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Monoterpenos/metabolismo , Comportamento Sexual Animal , Tisanópteros/fisiologiaRESUMO
BACKGROUND: Grain legumes are appreciated for their contribution to dietary protein and micronutrient intake in addition to their benefits in providing income and replenishing soil fertility. They offer potential benefits in developing countries where future food demand is increasing and both undernutrition and overweight co-exist. We studied the current and potential role of grain legumes on protein, both quantity and quality, and micronutrient adequacy in the diet of rural Ghanaian infants and young children. METHODS: Energy and nutrient (including amino acids) intakes of breastfed children of 6-8 months (n=97), 9-11 months (n=97), 12-23 months (n=114), and non-breastfed children of 12-23 months (n=29) from Karaga district in Northern Ghana were assessed using a repeated quantitative multi-pass 24-hour recall method. Food-based dietary guidelines that cover nutrient adequacy within the constraints of local current dietary patterns were designed using the linear programming software Optifood (version 4.0.9, Optifood©). Optifood was also used to evaluate whether additional legumes would further improve nutrient adequacy. RESULTS: We found that 60% of the children currently consumed legumes with an average portion size of 20 g per day (cooked) contributing more than 10% of their total protein, folate, iron and niacin intake. The final sets of food-based recommendations included legumes and provided adequate protein and essential amino acids but insufficient calcium, iron, niacin and/or zinc among breastfed children and insufficient calcium, vitamin C, vitamin B12 and vitamin A among non-breastfed children. The sets of food-based recommendations combined with extra legumes on top of the current dietary pattern improved adequacy of calcium, iron, niacin and zinc but only reached sufficient amounts for calcium among breastfed children of 6-8 months old. CONCLUSIONS: Although legumes are often said to be the 'meat of the poor' and current grain legume consumption among rural children contribute to protein intake, the main nutritional benefit of increased legume consumption is improvement of micronutrient adequacy. Besides food-based recommendations, other interventions are needed such as food-based approaches and/or fortification or supplementation strategies to improve micronutrient adequacy of infants and young children in rural Ghana. TRIAL REGISTRATION: Noguchi Memorial Institute for Medical Research Institutional Review Board (NMIMR-IRB CPN 087/13-14).
Assuntos
Dieta , Proteínas Alimentares/administração & dosagem , Fabaceae , Micronutrientes/administração & dosagem , Necessidades Nutricionais , Arachis , Aleitamento Materno , Grão Comestível , Feminino , Gana , Humanos , Lactente , Masculino , Política Nutricional , Programação Linear , População Rural , VignaRESUMO
Yields of grain legumes are constrained by available water. Thus, it is crucial to understand traits influencing water uptake and the efficiency of using water to produce biomass. Global comparisons and comparisons at specific locations reveal that water use of different grain legumes is very similar, which indicates that water use efficiency varies over a wide range due to differences in biomass and yield. Moreover, yield increases more per millimetre of water used in cool season grain legumes than warm season species. Although greater contrasts have been observed across species and genotypes at the pot and lysimeter level, agronomic factors need to be taken into account when scaling those studies to field-level responses. Conservative water use strategies in grain legumes such as low stomatal conductance as approximated by low photosynthetic carbon isotope discrimination reduces yield potential, whereas temporal adjustments of stomatal conductance within the growing season and in response to environmental factors (such as vapour pressure deficit) helps to optimize the trade-off between carbon gain and water loss. Furthermore, improved photosynthetic capacity, reduced mesophyll conductance, reduced boundary layer, and re-fixation of respired CO2 were identified as traits that are beneficial without water deficit, but also under terminal and transient drought. Genotypic variability in some grain legume species has been observed for several traits that influence water use, water use efficiency, and yield, including root length and the temporal pattern of water use, but even more variation is expected from wild relatives. Albeit that N2 fixation decreases under drought, its impact on water use is still largely unknown, but the nitrogen source influences gas exchange and, thus, transpiration efficiency. This review concludes that conservative traits are needed under conditions of terminal drought to help maintain soil moisture until the pod-filling period, but profligate traits, if tightly regulated, are important under conditions of transient drought in order to profit from short intermittent periods of available soil moisture.
Assuntos
Produtos Agrícolas/fisiologia , Secas , Fabaceae/fisiologia , Características de História de Vida , Água/fisiologia , Grão Comestível/fisiologiaRESUMO
Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.
Assuntos
Agricultura , Produtos Agrícolas/genética , Esterco , Cruzamento , Ecossistema , Grão Comestível , Fabaceae , Variação Genética , Vicia faba/genéticaRESUMO
Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.
Assuntos
Produtos Agrícolas , Grão Comestível , Fabaceae , Cruzamento , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/provisão & distribuição , Domesticação , Grão Comestível/genética , Fabaceae/genética , Abastecimento de Alimentos , Variação Genética , Genômica/métodos , HumanosRESUMO
Male sexual aggregations are a common territorial, mating-related or resource-based, behaviour observed in diverse organisms, including insects such as thrips. The influence of factors such as plant substrate, time of day, and geographic location on aggregation of thrips is uncertain, therefore we monitored the dispersion of male and female bean flower thrips (BFT), Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), on cowpea, Vigna unguiculata (L.) Walp. (Fabaceae), over three cowpea growth stages and across three cowpea-growing areas of Kenya. Our results indicated that for all the crop growth stages, the density of BFTs varied over the time of day, with higher densities at 10:00, 13:00, and 16:00 hours than at 07:00 hours. Thrips densities did not differ among blocks at the budding stage, but they did at peak flowering and podding stages. Dispersion indices suggested that both male and female BFTs were aggregated. Active male aggregation occurred only on green plant parts and it varied across blocks, crop stages, and locations. Similarly, active female aggregation was observed in peak flowering and podding stages. Such active aggregation indicates a semiochemical or behaviour-mediated aggregation. Identification of such a semiochemical may offer new opportunities for refining monitoring and management strategies for BFT on cowpea, the most important grain legume in sub-Saharan Africa.
RESUMO
The role of conscious versus unconscious selection is a central issue in plant domestication. While some authors hold that domesticated plants arose due to unconscious dynamics driven by selection pressures exerted by the ancient 'cultivation regime', others attribute an indispensable role to conscious and knowledge-based selection as an imperative component of Neolithic Near Eastern plant domestication. Recent experimental work demonstrated that, contrary to commonly held views, deep seed burial as part of the ancient cultivation regime cannot be considered as a general selection pressure underlying the increased seed size of domesticated legumes compared with their wild ancestors. This is a robust conclusion since, in three out of the eight legume species studied from different world regions, there was no association between larger seed size and better seedling emergence from depth. We concur with the authors that these legume crops were most likely under various and multiple (often interacting) selection pressures under domestication, thereby causing the observed parallel/convergent evolution of their larger grain size. However, it is puzzling that these authors did not mention the ever-present common denominator in plant domestication, i.e. conscious human decision-making. In our view, the human 'Mind' and the 'Science of the Concrete' à la Lévi-Strauss deserved to be discussed as an integral component of plant domestication.
Assuntos
Produtos Agrícolas/genética , Tomada de Decisões , Fabaceae/genética , Seleção Genética , Evolução Biológica , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Germinação , Humanos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/genética , Sementes/crescimento & desenvolvimentoRESUMO
Grain legumes are fair sources of protein, amino acids and energy, and can be used as a replacement for soybean meal in poultry feed formulations as the soybean meal becomes short in supply and costly. However, a concern associated with the use of grain legumes in poultry feeding is the presence of antinutritional factors. The effective processing and utilisation of these grain legumes in poultry feeding are well documented. The current review focuses on four selected grain legumes (lupins [Lupinus albus and Lupinus angustifolius], field peas [Phaseolus vulgaris], faba beans [Vicia faba] and chickpeas [Cicer arietinum]) and their nutrient content, the presence of antinutritional factors, processing methods and feeding value, including updated data based on recent research findings.
RESUMO
The search for alternative protein sources to soybean meal (SBM) in animal feeding is a strategic objective to reduce production costs and contribute to sustainable animal production. Spirulina, due to the high protein content, has emerged as a potential cost-effective, sustainable, viable, and high-nutritional-value food resource for many animal species. Insect larvae (Tenebrio molitor and Hermetia illucens) are also considered potential alternatives to SBM, given their high edible percentage of almost 100%, as well as a protein value higher than that of vegetable proteins. Rapeseed meal and grain legumes, such as fava beans, peas, lupins, and chickpea, can also be used as locally producible protein ingredients. This study reviews the nutritional value of these potential alternatives to SBM in pig diets, and their effects on animal performance, digestion, immune system, and the physicochemical and sensorial characteristics of meat, including processed pork products. The limits on their use in pig feeding are also reviewed to indicate gaps to be filled in future research on the supplementation level of these potential alternative protein sources in pig diets.
RESUMO
Grain legumes represent important crops for livestock feed and contribute to novel uses in the food industry; therefore, the best cultivation practices need to be assessed. This study aimed to identify herbicides to meet the current need for controlling broadleaf weeds without phytotoxicity in the grain legume crop per se. Field experiments were undertaken during the 2019 and 2020 growing seasons and laid out in a randomized complete block design with three replicates as follows: four grain legume crops (vetch, pea, faba bean, and white lupine) and nine pre-emergence (PRE) or post-emergence selective (POST) herbicide treatments (PRE: aclonifen, pendimethalin plus clomazone, metribuzin plus clomazone, benfluralin, terbuthylazine plus pendimethalin, S-metolachlor plus pendimethalin, flumioxazin; POST: pyridate, imazamox) alongside weedy check plots. Plant phytotoxicity, crop dry matter, yield features, weed presence, and weed dry matter were assessed during the experiments. There was differential efficacy among the nine herbicide treatments; the weed control was more effective in the case of Veronica arvensis L. and Sonchus spp. L. compared with Chenopodium album L., Sinapis arvensis L., and Silibum marianum L. regardless of the herbicide treatment. The most effective PRE herbicide was flumioxazin, which had the greatest control over the majority of weeds (>70%) resulting in the lowest total weed biomass. The second-best treatment was benfluralin and the mixture of terbuthylazine plus pendimethalin (both had only limited control in S. arvensis). The best POST herbicide was imazamox, with only limited control in S. arvensis. The tested herbicides caused low to medium and transient levels of phytotoxicity mainly in vetch and secondly in peas but not in faba beans and lupines. Concerning all weed management treatments, benfluralin resulted in the highest grain yields for all four grain legume crops during both growing seasons. Among grain legumes, vetch had the highest competitive ability against weeds, whereas peas were the least tolerant against weed competition.
RESUMO
Adopting eco-friendly diets will demand the consumption of more plant-based protein food sources such as legumes. However, assessing the impact of such a dietary shift on the dietary and nutritional intake of traditionally omnivorous populations is needed. The objective of this study was to assess the impact of substituting a traditional omnivorous-based lunch for a vegetarian, legume-based meal on the daily dietary and nutritional intake in a group of omnivorous adults in the city of Porto, Portugal. Nineteen, non-vegetarian, healthy young adults consumed a vegetarian, legume-based meal from Monday to Friday, for 8 consecutive weeks. Socio-demographic data, health status, lifestyle-related information and anthropometric parameters were recorded. Three-day food records were used to collect food intake at baseline and week 8. European Food Safety Authority and World Health Organization reference values were used to assess nutritional inadequacies. Variables were described as medians (P25 and P75 ). Wilcoxon signed-rank and Mann-Whitney tests were used for statistical comparisons. A p-value of <0.05 was considered statistically significant. Participants consumed 38.0 (P25 = 35.0; P75 = 40.0) meals, resulting in an intake of 84.5 g (P25 = 74.9; P75 = 98.4) of cooked legumes per meal, meaning 11 subjects (57.9%) met the Portuguese guidelines for legume consumption (≥80 g/day of legumes). The current dietary intervention did not seem to aggravate the prevalence of nutritional inadequacies for the macro- and micronutrients tested, except for the case of vitamin B12 (52.6% [95% CI: 28.9-75.6] vs. 78.9% [95% CI: 54.4-94.0]). This could be linked to the reduction of dietary sources of this vitamin which is an expected consequence of vegetarian meals. Dietary changes towards grain legume-based diets are desirable yet need to be carefully implemented to prevent exacerbating potential nutrient inadequacies, especially of vitamin B12 .
Assuntos
Fabaceae , Adulto Jovem , Humanos , Dieta , Verduras , Vitaminas , Ingestão de Alimentos , Vitamina B 12 , RefeiçõesRESUMO
Rhizoctonia solani is one of the most common soil-borne fungal pathogens of legume crops worldwide. We collected rDNA-ITS sequences from NCBI GenBank, and the aim of this study was to examine the genetic diversity and phylogenetic relationships of various R. solani anastomosis groups (AGs) that are commonly associated with grain legumes (such as soybean, common bean, pea, peanut, cowpea, and chickpea) and forage legumes (including alfalfa and clover). Soybean is recognized as a host for multiple AGs, with AG-1 and AG-2 being extensively investigated. This is evidenced by the higher representation of sequences associated with these AGs in the NCBI GenBank. Other AGs documented in soybean include AG-4, AG-7, AG-11, AG-5, AG-6, and AG-9. Moreover, AG-4 has been extensively studied concerning its occurrence in chickpea, pea, peanut, and alfalfa. Research on the common bean has been primarily focused on AG-2, AG-4, and AG-1. Similarly, AG-1 has been the subject of extensive investigation in clover and cowpea. Collectively, AG-1, AG-2, and AG-4 have consistently been identified and studied across these diverse legume crops. The phylogenetic analysis of R. solani isolates across different legumes indicates that the distinct clades or subclades formed by the isolates correspond to their specific anastomosis groups (AGs) and subgroups, rather than being determined by their host legume crop. Additionally, there is a high degree of sequence similarity among isolates within the same clade or subclade. Principal coordinate analysis (PCoA) further supports this finding, as isolates belonging to the same AGs and/or subgroups cluster together, irrespective of their host legume. Therefore, the observed clustering of R. solani AGs and subgroups without a direct association with the host legume crop provides additional support for the concept of AGs in understanding the genetic relationships and evolution of R. solani.
RESUMO
Four lupin species, Lupinus angustifolius, L. albus, L. luteus, and L. mutabilis, are grown as cool-season grain legume crops. Fifteen viruses infect them. Two of these, bean yellow mosaic virus (BYMV) and cucumber mosaic virus (CMV), cause diseases that threaten grain lupin production. Phytosanitary and cultural control measures are mainly used to manage them. However, breeding virus-resistant lupin cultivars provides an additional management approach. The need to develop this approach stimulated a search for virus resistance sources amongst cultivated lupin species and their wild relatives. This review focuses on the progress made in optimizing virus resistance screening procedures, identifying host resistances to BYMV, CMV, and additional viral pathogen alfalfa mosaic virus (AMV), and the inclusion of BYMV and CMV resistance within lupin breeding programs. The resistance types found in different combinations of virus and grain lupin species include localized hypersensitivity, systemic hypersensitivity, extreme resistance, and partial resistance to aphid or seed transmission. These resistances provide a key enabler towards fast tracking gains in grain lupin breeding. Where studied, their inheritance depended upon single dominant genes or was polygenic. Although transgenic virus resistance was incorporated into L. angustifolius and L. luteus successfully, it proved unstable. Priorities for future research are discussed.
RESUMO
Increasing yield resiliency under water deficits remains a high priority for crop improvement. In considering the yield benefit of a plant trait modification, two facts are often overlooked: (1) the total amount of water available to a crop through a growing season ultimately constrains growth and yield cannot exceed what is possible with the limited amount of available water, and (2) soil water content always changes over time, so plant response needs to be considered within a temporally dynamic context of day-to-day variation in soil water status. Many previous evaluations of drought traits have implicitly considered water deficit from a "static" perspective, but while the static approach of stable water deficit treatments is experimentally congruous, the results are not realistic representations of real-world drought conditions, where soil water levels are always changing. No trait always results in a positive response under all drought scenarios. In this paper, we suggest two key traits for improving grain legume yield under water deficit conditions: (1) partial stomata closure at elevated atmospheric vapor pressure deficit that results in soil water conservation, and (2) lessening of the high sensitivity of nitrogen fixation activity to soil drying.
RESUMO
Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.