Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Regen Res ; 8(17): 1582-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206454

RESUMO

X-irradiation has a beneficial effect in treating spinal cord injury. We supposed that X-irradiation could improve the microenvironment at the site of a spinal cord injury and inhibit glial scar formation. Thus, this study was designed to observe the effects of 8 Gy X-irradiation on the injury site at 6 hours and 2, 4, 7, and 14 days post injury, in terms of improvement in the microenvironment and hind limb motor function. Immunohistochemistry showed that the expression of macrophage marker ED-1 and the area with glial scar formation were reduced. In addition, the Basso, Beattie and Bresnahan score was higher at 7 days post injury relative to the other time points post injury. Results indicated that X-irradiation at a dose of 8 Gy can inhibit glial scar formation and alleviate the inflammatory reaction, thereby repairing spinal cord injury. X-irradiation at 7 days post spinal cord injury may be the best time window.

2.
Neural Regen Res ; 8(18): 1663-72, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25206463

RESUMO

Acupuncture is used extensively in China for the treatment of stroke and other neurological disorders. The National Institutes of Health recommends acupuncture as an adjunctive therapy for stroke recovery. This study included patients with post-stroke detrusor overactivity who were treated in the Department of Neurology, Fourth Hospital of Harbin Medical University, China. Subjects received either electroacupuncture or sham electroacupuncture at points Baliao [including bilateral Shangliao (BL31), bilateral Ciliao (BL32), bilateral Zhongliao (BL33), and bilateral Xialiao (BL34)] and Huiyang (BL35). Our results showed that electroacupuncture significantly improved cystometric capacity and bladder compliance, decreased detrusor leak point pressure, ameliorated lower urinary tract symptoms, and decreased the risk of upper urinary tract damage. These findings indicate that electroacupuncture at points Baliao and Huiyang is an effective treatment for post-stroke detrusor overactivity.

3.
Neural Regen Res ; 8(30): 2811-9, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-25206602

RESUMO

The Alzheimer's disease model in Wistar rats was established by injection of amyloid ß-peptide (Aß1-42) into the hippocampal CA1 region. Rats were treated with suspended moxibustion on Baihui (GV20) and Shenshu (BL23) acupoints. Prior to and post Aß1-42 exposure. Results showed no evidence of apoptosis in hippocampal neurons, a significantly reduced apoptosis rate of neurons and improved learning and memory abilities were observed in the Alzheimer's disease model. In particular, moxibustion prior to Aß1-42 exposure was more effective than moxibustion after Aß1-42 exposure in protecting the neuronal structure and lowering the apoptosis rate. Our findings indicate that a combination of preventive and therapeutic moxibustion has a beneficial effect for the prevention of Alzheimer's disease development.

4.
Neural Regen Res ; 8(31): 2914-22, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206612

RESUMO

Hemiplegia caused by stroke indicates dysfunction of the network between the brain and limbs, namely collateral shock in the brain. Contralateral needling is the insertion of needles into acupoints on the relative healthy side of the body to treat diseases such as apoplexy. However, there is little well-designed and controlled clinical evidence for this practice. This study investigated whether contralateral needling could treat hemiplegia after acute ischemic stroke in 106 randomly selected patients with acute ischemic stroke. These patients were randomly assigned to three groups: 45 in the contralateral needling group, receiving acupuncture on the unaffected limbs; 45 in the tional acupuncture group, receiving acupuncture on the hemiplegic limbs; and 16 in the control group, receiving routine treatments without acupuncture. Acupuncture at acupoints Chize (LU5) in the upper limb and Jianliao (TE14) in the lower limb was performed for 45 minutes daily for 30 consecutive days. The therapeutic effective rate, Neurological Deficit Score, Modified Barthel Index and Fugl-Meyer Assessment were evaluated. The therapeutic effective rate of contralateral needling was higher than that of conventional acupuncture (46.67% vs. 31.11%, P < 0.05). The neurological deficit score of contralateral needling was significantly decreased compared with conventional acupuncture (P < 0.01). The Modified Barthel Index and Fugl-Meyer Assessment score of contralateral needling increased more significantly than those of conventional acupuncture (both P < 0.01). The present findings suggest that contralateral needling unblocks collaterals and might be more effective than conventional acupuncture in the treatment of hemiplegia following acute ischemic stroke.

5.
Neural Regen Res ; 8(17): 1541-1550, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459465

RESUMO

The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant.

6.
Neural Regen Res ; 8(1): 6-12, 2013 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206366

RESUMO

Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism proteins are expressed in the brain including transferrin receptor and ferritin-H. However, it is still unknown whether they are developmentally regulated in oligodendrocyte lineage cells for myelination. Here, using an in vitro cultured differentiation model of oligodendrocytes, we found that both transferrin receptor and ferritin-H are significantly upregulated during oligodendrocyte maturation, implying the essential role of iron in the development of oligodendrocytes. Additional different doses of Fe(3+) in the cultured medium did not affect oligodendrocyte precursor cell maturation or ferritin-H expression but decreased the expression of the transferrin receptor. These results indicate that upregulation of both transferrin receptor and ferritin-H contributes to maturation and myelination of oligodendrocyte precursor cells.

7.
Neural Regen Res ; 8(10): 900-8, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206381

RESUMO

Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.

8.
Neural Regen Res ; 8(10): 948-54, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206387

RESUMO

A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I-III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.

9.
Neural Regen Res ; 8(10): 922-9, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206384

RESUMO

The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

10.
Neural Regen Res ; 8(11): 983-90, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206391

RESUMO

Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pretreatment group, and gradually decreased, while the maximum possible effect in the bupivacaine group continued to increase after intrathecal injection of bupivacaine. Histological observation showed that after 4 days of intrathecal injection of bupivacaine, the number of shrunken, vacuolated, apoptotic and caspase-9-positive cells in the dorsal root ganglion in the extract-pretreatment group was significantly reduced compared with the bupivacaine group. These findings indicate that extracts from rabbit skin inflamed by the vaccinia virus can attenuate neurotoxicity induced by intrathecal injection of bupivacaine in pregnant rats, possibly by inhibiting caspase-9 protein expression and suppressing nerve cell apoptosis.

11.
Neural Regen Res ; 8(11): 1016-24, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206395

RESUMO

In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenous Activin A. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and Hoechst 33324 staining showed that the survival percentage of PC12 cells significantly decreased and the rate of apoptosis significantly increased after oxygen-glucose deprivation. Exogenous Activin A significantly increased the survival percentage of PC12 cells in a dose-dependent manner. Reverse transcription-PCR results revealed a significant increase in Activin receptor IIA, Smad3 and Smad4 mRNA levels, which are key sites in the Activin A/Smads signaling pathway, in neuron-like cells subjected to oxygen-glucose deprivation, while mRNA expression of the apoptosis-regulation gene caspase-3 decreased. Our experimental findings indicate that exogenous Activin A plays an anti-apoptotic role and protects neurons by means of activating the Activin A/Smads signaling pathway.

12.
Neural Regen Res ; 8(11): 1031-40, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206397

RESUMO

Neurotrophin-3 (NT-3) can promote the repair of central nervous system and retinal damage. In previous reports, NT-3 has been expressed by viral vectors. However, plasmid vectors have a safer profile compared with viral vectors in clinical studies. This study recombined amplified human retinal NT-3 with a eukaryotic expression plasmid containing green fluorescent protein (GFP) to construct an NT-3 expression plasmid, pEGFP-N1-NT-3. The transfection efficiency 48 hours after pEGFP-N1-NT-3 transfection to 293T cells was 50.06 ± 2.78%. Abundant NT-3-GFP was expressed in 293T cells as observed by fluorescence microscopy, suggesting the construct pEGFP-N1-NT-3 effectively expressed and secreted NT-3-GFP. Secretory vesicles containing NT-3-GFP were observed in a constant location in cells by laser scan confocal microscopy, indicating the expression and secretion processes of NT-3 in eukaryotic cells were in accordance with the physical synthesis processes of secreted proteins. Western blot assay showed that pro-NT-3-GFP had a molecular weight of 56 kDa, further confirming NT-3-GFP expression. At 48 hours after transfection, the concentration of NT-3 in culture medium was 22.3 ng/mL, suggesting NT-3 produced by pEGFP-N1-NT-3 was efficiently secreted. This study constructed a human retinal-derived NT-3 eukaryotic expression plasmid that efficiently expressed and secreted NT-3.

13.
Neural Regen Res ; 8(11): 1041-7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206398

RESUMO

Following peripheral nerve compression, peripheral nerve microcirculation plays important roles in regulating the nerve microenvironment and neurotrophic substances, supplying blood and oxygen and maintaining neural conduction and axonal transport. This paper has retrospectively analyzed the articles published in the past 10 years that addressed the relationship between peripheral nerve compression and changes in intraneural microcirculation. In addition, we describe changes in different peripheral nerves, with the aim of providing help for further studies in peripheral nerve microcirculation and understanding its protective mechanism, and exploring new clinical methods for treating peripheral nerve compression from the perspective of neural microcirculation.

14.
Neural Regen Res ; 8(12): 1061-70, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25206400

RESUMO

Several studies have demonstrated that the Chinese herb Gastrodia elata Blume can protect against amyloid beta-peptide (Aß)-induced cell death. To investigate the possible therapeutic effects of Gastrodia elata Blume on Alzheimer's disease, we established a rat model of Alzheimer's disease by injecting Aß25-35 into bilateral hippocampi. These rats were intragastrically administered 500 or 1 000 mg/kg Gastrodia elata Blume per day for 52 consecutive days. Morris water maze tests showed that Gastrodia elata Blume treatment significantly improved the spatial memory of Alzheimer's disease rats. Congo red staining revealed that Gastrodia elata Blume significantly reduced the number of amyloid deposits in the hippocampus of these rats. Western blot analysis showed that choline acetyltransferase expression in the medial septum and hippocampus was significantly increased by the treatment of Gastrodia elata Blume, while Ellman method showed significant decrease in the activity of acetylcholinesterase in all three regions (prefrontal cortex, medial septum and hippocampus). These findings suggest that long-term administration of Gastrodia elata Blume has therapeutic potential for Alzheimer's disease.

15.
Neural Regen Res ; 8(12): 1091-102, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25206403

RESUMO

The traditional Chinese medicine Jiaweisinisan has antidepressant effects, and can inhibit hypothalamus-pituitary-adrenal gland axis hyperactivity in stress-induced depression. In this study, rat hippocampal neural precursor cells were cultured in serum-free medium in vitro and a stress damage model was established with 120 µM corticosterone. Cells were treated with 10% (v/v) Jiaweisinisan drug-containing serum and the corticosterone antagonist RU38486. Results of the 3-(4,5-dimethylthiazol-2-yl)-3,5-di-phenytetrazoliumromide assay showed that both Jiaweisinisan drug-containing serum and RU38486 promoted the proliferation of neural precursor cells after corticosterone exposure. Immunofluorescence detection showed that after Jiaweisinisan drug-containing serum and RU38486 treatment, the 5-bromo-2-deoxyuridine/terminal deoxynucleotidyl transferase dUTP nick end labeling ratio in hippocampal neural precursor cells significantly increased, and the apoptotic rates of glial cells reduced, and neuron-like cell differentiation from neural precursor cells significantly increased. Our experimental findings indicate that Jiaweisinisan promotes hippocampal neurogenesis after stress damage.

16.
Neural Regen Res ; 8(13): 1169-79, 2013 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206411

RESUMO

Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca(2+)-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca(2+)-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca(2+) influx, inhibit calcium overload, and diminish Ca(2+) toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.

17.
Neural Regen Res ; 8(13): 1236-46, 2013 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206418

RESUMO

Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia.

18.
Neural Regen Res ; 8(13): 1228-35, 2013 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25206417

RESUMO

OBJECTIVE: To investigate the association between angiotensinogen gene M235T polymorphism and ischemic stroke in East Asians. DATA RETRIEVAL: A computer-based online search was conducted in PubMed, Google scholar, China National Knowledge lnfrastructure database between January 1990 and April 2012 for relevant studies. The key words were angiotensinogen or AGT, polymorphism or genetic and ischemic stroke or cerebral infarction. SELECTION CRITERIA: Case-controlled studies addressing the correlation between angiotensinogen gene M235T polymorphism and ischemic stroke in East Asians were included. The distribution of genotypes in the included studies was tested for Hardy-Weinberg equilibrium. Quality evaluation of the included studies was conducted by two physicians. Statistical analyses were carried out using Stata 12.0 software for meta-analysis. Heterogeneity tests, sensitivity analysis and publication bias were also conducted. MAIN OUTCOME MEASURES: The association between angiotensinogen gene M235T polymorphism and ischemic stroke risk in East Asians was assessed. RESULTS: Six relevant studies involving 891 patients with ischemic stroke and 727 controls were included in this meta-analysis. Results showed that there was a significant association between angiotensinogen gene M235T polymorphism and the risk of ischemic stroke in East Asians (T vs. M: odds ratio (OR) = 1.54, 95% confidence interval (CI) = 1.10-2.16; TT vs. MM: OR = 2.24, 95%CI = 1.37-3.66; TT vs. MT: OR = 1.76, 95%CI = 1.41-2.20; MM + MT vs. TT: OR = 0.57, 95%CI = 0.46-0.70). Sensitivity analysis confirmed that the study results were stable and reliable, with no publication bias. CONCLUSION: The angiotensinogen gene M235T polymorphism is associated with ischemic stroke in East Asians, and the TT genotype and T allele are risk factors for ischemic stroke.

19.
Neural Regen Res ; 8(14): 1253-61, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206419

RESUMO

Fluorescent neuronal tracers should not be toxic to the nervous system when used in long-term labeling. Previous studies have addressed tracer toxicity, but whether tracers injected into an intact nerve result in functional impairment remains to be elucidated. In the present study, we examined the functions of motor, sensory and autonomic nerves following the application of 5% Fluoro-Gold, 4% True Blue and 10% Fluoro-Ruby (5 µL) to rat tibial nerves via pressure injection. A set of evaluation methods including walking track analysis, plantar test and laser Doppler perfusion imaging was used to determine the action of the fluorescent neuronal tracers. Additionally, nerve pathology and ratio of muscle wet weight were also observed. Results showed that injection of Fluoro-Gold significantly resulted in loss of motor nerve function, lower plantar sensibility, increasing blood flow volume and higher neurogenic vasodilatation. Myelinated nerve fiber degeneration, unclear boundaries in nerve fibers and high retrograde labeling efficacy were observed in the Fluoro-Gold group. The True Blue group also showed obvious neurogenic vasodilatation, but less severe loss of motor function and degeneration, and fewer labeled motor neurons were found compared with the Fluoro-Gold group. No anomalies of motor and sensory nerve function and no myelinated nerve fiber degeneration were observed in the Fluoro-Ruby group. Experimental findings indicate that Fluoro-Gold tracing could lead to significant functional impairment of motor, sensory and autonomic nerves, while functional impairment was less severe following True Blue tracing. Fluoro-Ruby injection appears to have no effect on neurological function.

20.
Neural Regen Res ; 8(14): 1262-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206420

RESUMO

Schwann cells and neurotrophin-3 play an important role in neural regeneration, but the secretion of neurotrophin-3 from Schwann cells is limited, and exogenous neurotrophin-3 is inactived easily in vivo. In this study, we have transfected neurotrophin-3 into Schwann cells cultured in vitro using nanoparticle liposomes. Results showed that neurotrophin-3 was successfully transfected into Schwann cells, where it was expressed effectively and steadily. A composite of Schwann cells transfected with neurotrophin-3 and poly(lactic-co-glycolic acid) biodegradable conduits was transplanted into rats to repair 10-mm sciatic nerve defects. Transplantation of the composite scaffold could restore the myoelectricity and wave amplitude of the sciatic nerve by electrophysiological examination, promote nerve axonal and myelin regeneration, and delay apoptosis of spinal motor neurons. Experimental findings indicate that neurotrophin-3 transfected Schwann cells combined with bridge grafting can promote neural regeneration and functional recovery after nerve injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA