Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2318777121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547057

RESUMO

A concept of solar energy convertible zinc-air battery (SZAB) is demonstrated through rational design of an electrode coupled with multifunction. The multifunctional electrode is fabricated using nitrogen-substituted graphdiyne (N-GDY) with large π-conjugated carbonous network, which can work as photoresponsive bifunctional electrocatalyst, enabling a sunlight-promoted process through efficient injection of photoelectrons into the conduction band of N-GDY. SZAB enables direct conversion and storage of solar energy during the charging process. Such a battery exhibits a lowered charge voltage under illumination, corresponding to a high energy efficiency of 90.4% and electric energy saving of 30.3%. The battery can display a power conversion efficiency as high as 1.02%. Density functional theory calculations reveal that the photopromoted oxygen evolution reaction kinetics originates from the transition from the alkyne bonds to double bonds caused by the transfer of excited electrons, which changes the position of highest occupied molecular orbital and lowest unoccupied molecular orbital, thus greatly promoting the formation of intermediates to the conversion process. Our findings provide conceptual and experimental confirmation that batteries are charged directly from solar energy without the external solar cells, providing a way to manufacture future energy devices.

2.
Proc Natl Acad Sci U S A ; 120(16): e2221002120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036993

RESUMO

A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 µg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 µg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.

3.
Proc Natl Acad Sci U S A ; 119(36): e2206946119, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037378

RESUMO

Overall seawater electrolysis is an important direction for the development of hydrogen energy conversion. The key issues include how to achieve high selectivity, activity, and stability in seawater electrolysis reactions. In this report, the heterostructures of graphdiyne-RhOx-graphdiyne (GDY/RhOx/GDY) were constructed by in situ-controlled growth of GDY on RhOx nanocrystals. A double layer interface of sp-hybridized carbon-oxide-Rhodium (sp-C∼O-Rh) was formed in this system. The microstructures at the interface are composed of active sites of sp-C∼O-Rh. The obvious electron-withdrawing surface enhances the catalytic activity with orders of magnitude, while the GDY outer of the metal oxides guarantees the stability. The electron-donating and withdrawing sp-C∼O-Rh structures enhance the catalytic activity, achieving high-performance overall seawater electrolysis with very small cell voltages of 1.42 and 1.52 V at large current densities of 10 and 500 mA cm-2 at room temperatures and ambient pressures, respectively. The compositional and structural superiority of the GDY-derived sp-C-metal-oxide active center offers great opportunities to engineer tunable redox properties and catalytic performance for seawater electrolysis and beyond. This is a typical successful example of the rational design of catalytic systems.

4.
Nano Lett ; 24(26): 7999-8007, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900975

RESUMO

The rapid increase in data storage worldwide demands a substantial amount of energy consumption annually. Studies looking at low power consumption accompanied by high-performance memory are essential for next-generation memory. Here, Graphdiyne oxide (GDYO), characterized by facile resistive switching behavior, is systematically reported toward a low switching voltage memristor. The intrinsic large, homogeneous pore-size structure in GDYO facilitates ion diffusion processes, effectively suppressing the operating voltage. The theoretical approach highlights the remarkably low diffusion energy of the Ag ion (0.11 eV) and oxygen functional group (0.6 eV) within three layers of GDYO. The Ag/GDYO/Au memristor exhibits an ultralow operating voltage of 0.25 V with a GDYO thickness of 5 nm; meanwhile, the thicker GDYO of 29 nm presents multilevel memory with an ON/OFF ratio of up to 104. The findings shed light on memory resistive switching behavior, facilitating future improvements in GDYO-based devices toward opto-memristors, artificial synapses, and neuromorphic applications.

5.
Nano Lett ; 24(10): 3044-3050, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437632

RESUMO

Lithium (Li) metal stands as a promising anode in advancing high-energy-density batteries. However, intrinsic issues associated with metallic Li, especially the dendritic growth, have hindered its practical application. Herein, we focus on molecular combined structural design to develop dendrite-free anodes. Specifically, using hydrogen-substituted graphdiyne (HGDY) aerogel hosts, we successfully fabricated a promising Li composite anode (Li@HGDY). The HGDY aerogel's lithiophilic nature and hierarchical pores drive molten Li infusion and reduce local current density within the three-dimensional HGDY host. The unique molecular structure of HGDY provides favorable bulk pathways for lithium-ion transport. By simultaneous regulation of electron and ion transport within the HGDY host, uniform lithium stripping/platting is fulfilled. Li@HGDY symmetric cells exhibit a low overpotential and stable cycling. The Li@HGDY||lithium iron phosphate full cell retained 98.1% capacity after 170 cycles at 0.4 C. This study sheds new light on designing high-capacity and long-lasting lithium metal anodes.

6.
Small ; : e2310467, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552223

RESUMO

Electroreduction of nitrate to ammonia provides an interesting pathway for wastewater treatment and valorization. Cu-based catalysts are active for the conversion of NO3 - to NO2 - but suffer from an inefficient hydrogenation process of NO2 -. Herein, CuxO/N-doped graphdiyne (CuxO/N-GDY) with pyridine N configuration are in situ prepared in one pot. Benefiting from the synergistic effect of pyridinic N in GDY and CuxO, the prepared CuxO/N-GDY tested in a commercial H-cell achieved a faradaic efficiency of 85% toward NH3 at -0.5 V versus RHE with a production rate of 340 µmol h-1 mgcat -1 in 0.1 M KNO3. When integrating the CuxO/N-GDY in an anion exchange membrane flow electrolyzer, a maximum Faradaic efficiency of 89% is achieved at a voltage of 2.3 V and the production rate is 1680 µmol h-1 mgcat -1 at 3.3 V in 0.1 M KNO3 at room temperature. Operation at 40 °C further promoted the overall reaction kinetics of NO3 - to NH3, but penalized its selectivity with respect to hydrogen evolution reaction. The high selectivity and production rate in this device configuration demonstrate its potential for industrial application.

7.
Small ; 20(14): e2307999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972271

RESUMO

Zn-air battery (ZAB) is advocated as a more viable option in the new-energy technology. However, the limited-output capacity at a high current density impedes the driving range in power batteries substantially. Here, a novel heterojunction-based graphdiyne (GDY) and Ag29Cu7 alloy quantum dots (Ag29Cu7 QDs/GDY) for constructing a high-performance aqueous ZAB are fabricated. The as-fabricated ZAB achieves discharge at up to 100 mA cm-2 (the highest value ever reported) along with a remarkable output specific capacity of 786.2 mAh g-1 Zn, which is mainly benefitted from the binary-synergistic effect toward a stable triple-phase interface for air electrode induced by the Ag29Cu7 QDs and GDY in harsh base, together with the decreasing reaction energy barrier and polarization. The results outperform the superior reports discharging at low current and will bring breakthrough progress toward the practical applications of ZAB on large power supply facilities.

8.
Small ; 20(9): e2306233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849033

RESUMO

The nitrides and carbides of transition metals are highly favored due to their excellent physical and chemical properties, among which MXene is a hot research topic for microwave absorption. Herein, the controlled preparation of 3D Mo2 TiC2 Tx -based microspheres toward microwave absorption is reported for the first time. With the merits of the performances of both reduced graphite oxide (RGO) and MXene sufficiently considered, the influence of carbonization temperature on the internal crystal structure and the effective microwave-material interaction surface of the prepared Mo2 TiC2 Tx /RGO is systematically investigated. The structure-activity relationships relating the apparent morphology and crystal structure to the microwave absorption performance are deeply explored, and the wave absorption mechanism is put forward as well. The results show that the Mo2 TiC2 Tx /RGO-700 product obtained after heating treatment at 700 °C exhibits excellent microwave absorption performance, with the RLmin being up to -55.1 dB@2.1 mm@13.8 GHz, and the corresponding effective absorption bandwidth covering 5.7 GHz. The outstanding microwave absorption characteristics are attributed to the appropriate impedance matching, high specific surface area, rich intrinsic defects, desirable conductivity, and strong multipolarization capabilities. This work enriches the types of MXene-based composite absorbers and provides a new strategy for controlled preparation of high-performance 3D composite absorbers.

9.
Small ; : e2401347, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716685

RESUMO

A challenge facing the chlor-alkali process is the lack of electrocatalyst with high activity and selectivity for the efficient industrial production of chlorine. Herein the authors report a new electrocatalyst that can generate multi-interface structure by in situ growth of graphdiyne on the surface of cobalt oxides (GDY/Co3O4), which shows great potential in highly selective and efficient chlorine production. This result is due to the strong electron transfer and high density charge transport between GDY and Co3O4 and the interconversion of the mixed valence states of the Co atoms itself. These intrinsic characteristics efficiently enhance the conductivity of the catalyst, facilitate the reaction kinetics, and improve the overall catalytic selectivity and activity. Besides, the protective effect of the formed GDY layer is remarkable endowing the catalyst with excellent stability. The catalyst can selectively produce chlorine in low-concentration of NaCl aqueous solution at room temperature and pressure with the highest Faraday efficiency of 80.67% and an active chlorine yield rate of 184.40 mg h-1 cm-2, as well as superior long-term stability.

10.
Small ; 20(21): e2309255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148298

RESUMO

Many efforts have been devoted to obtaining excellent cathode catalysts for Zinc air batteries (ZABs), but the inevitable use of binder will damage the catalytic activity and weaken long-term stability, inefficient mass transfer of oxygen is also chargable for the limited activity. Herein, in situ grown hydrogen substituted graphdiyne (HGDY) on carbon paper has been prepared and used as cathode catalyst layer in ZABs. Multiple catalytic sites are firmly combined and end with the boosted bifunctional catalytic activity of oxygen reduction and oxygen evolution. Moreover, the specific surface area, sufficient active sites, multilevel pore nanostructure and robust conductivity are fully exposed to establish efficient catalytic interface and skeleton. Cu/Co nanoparticles are uniformly distributed and warped by HGDY network, which can stably exist during the catalytic process. As a result, a current density of 18.75 mA cm-2 and a Tafel slope of 61.06 mV dec-1 for oxygen reduction and a ultralong operation for more than 2300 h in aqueous ZAB have been achieved, which is beyond many reported bifunctional catalysts in ZAB system.

11.
Small ; 20(25): e2307276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196162

RESUMO

Graphdiyne (GDY) has garnered significant attention as a cutting-edge 2D material owing to its distinctive electronic, optoelectronic, and mechanical properties, including high mobility, direct bandgap, and remarkable flexibility. One of the key challenges hindering the implementation of this material in flexible applications is its large area and uniform synthesis. The facile growth of centimeter-scale bilayer hydrogen substituted graphdiyne (Bi-HsGDY) on germanium (Ge) substrate is achieved using a low-temperature chemical vapor deposition (CVD) method. This material's field effect transistors (FET) showcase a high carrier mobility of 52.6 cm2 V-1 s-1 and an exceptionally low contact resistance of 10 Ω µm. By transferring the as-grown Bi-HsGDY onto a flexible substrate, a long-distance piezoresistive strain sensor is demonstrated, which exhibits a remarkable gauge factor of 43.34 with a fast response time of ≈275 ms. As a proof of concept, communication by means of Morse code is implemented using a Bi-HsGDY strain sensor. It is believed that these results are anticipated to open new horizons in realizing Bi-HsGDY for innovative flexible device applications.

12.
Small ; : e2400093, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353062

RESUMO

For large-size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two-phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl-substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island-like heterogeneous structures, together with tandem toroidal built-in electric field (BIEF) between every micro heterointerface. The island-like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low-capacity degradation (≈0.01% over 5560 cycles at 1 A g-1 ). Moreover, the TPTG@CuQDs-based full cell delivers an outstanding reversible capacity of ≈110 mAh g-1 over 800 cycles at 1 A g-1 . This quantum-scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.

13.
Chemistry ; 30(29): e202400227, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501673

RESUMO

Two-dimensional semiconductor-based nanomaterials have shown to be an effective substrate for Surface-enhanced Raman Scattering (SERS) spectroscopy. However, the enhancement factor (EF) tends to be relatively weak compared to that of noble metals and does not allow for trace detection of molecules. In this work, we report the successful preparation of two-dimensional (2D) amorphous non-van der Waals heterostructures MoO3-x/GDYO nanomaterials using supercritical CO2. Due to the synergistic effect of the localized surface plasmon resonance (LSPR) effect and the charge transfer effect, it exhibits excellent SERS performance in the detection of methylene blue (MB) molecules, with a detection limit as low as 10-14 M while the enhancement factor (EF) can reach an impressive 2.55×1011. More importantly, the chemical bond bridging at the MoO3-x/GDYO heterostructures interface can accelerate the electron transfer between the interfaces, and the large number of defective surface structures on the heterostructures surface facilitates the chemisorption of MB molecules. And the charge recombination lifetime can be proved by a ~1.7-fold increase during their interfacial electron-transfer process for MoO3-x/GDYO@MB mixture, achieving highly sensitive SERS detection.

14.
Mikrochim Acta ; 191(5): 243, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575711

RESUMO

PEDOT: PSS has been used as a biomimetic uric acid (UA) sensor but suffers from unfortunate low detection limit (LOD), narrow detection range and poor stability. Herein, we get graphdiyne (GDY) marry PEDOT:PSS to create a very stable GDY@PEDOT:PSS heterostructure for a biomimetic UA sensor, which accomplishes the lowest LOD (6 nM), the widest detection range (0.03 µM-7 mM) and the longest stability (98.1% for 35 days) among the related UA sensors. The sensor was successfully used to in situ real-time detection of  UA in sweat. The enhancement mechanisms of the sensor were investigated, and results discover that C≡C of GDY and C = C of PEDOT:PSS can cross-link each other by π-π interactions, making not only the former strongly resistant against oxidation deterioration, but also causes the latter to efficiently prevent water swelling of polymer for poor conductivity, thereby leading to high stability from both components. While the stabilized heterostructure can also offer more active sites by enhanced absorption of UA via π-π interactions for highly sensitive detection of UA. This work holds great promise for a practical sweat UA sensor while providing scientific insight to design a stable and electrocatalytically active structure from two unstable components.


Assuntos
Grafite , Suor , Ácido Úrico , Limite de Detecção
15.
Nano Lett ; 23(13): 5967-5974, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350461

RESUMO

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage systems due to their high theoretical energy density and the low cost of sulfur. However, slow conversion kinetics between the insulating S and lithium sulfide (Li2S) remains as a technical challenge. In this work, we report a catalyst featuring nickel (Ni) single atoms and clusters anchored to a porous hydrogen-substituted graphdiyne support (termed Ni@HGDY), which is incorporated in Li2S cathodes. The rapidly synthesized catalyst was found to enhance ionic and electronic conductivity, decrease the reaction overpotential, and promote more complete conversion between Li2S and sulfur. The addition of Ni@HGDY to commercial Li2S powder enabled a capacity of over 516 mAh gLi2S-1 at 1 C for over 125 cycles, whereas the control Li2S cathode managed to maintain just over 200 mAh gLi2S-1. These findings highlight the efficacy of Ni as a metal catalyst and demonstrate the promise of HGDY in energy storage devices.

16.
Nano Lett ; 23(7): 3023-3029, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996421

RESUMO

Controlling the structure of graphdiyne (GDY) is crucial for the discovery of new properties and the development of new applications. Herein, the microemulsion synthesis of GDY hollow spheres (HSs) and multiwalled nanotubes composed of ultrathin nanosheets is reported for the first time. The formation of an oil-in-water (O/W) microemulsion is found to be a key factor controlling the growth of GDY. These GDY HSs have fully exposed surfaces because of the avoidance of overlapping between nanosheets, thereby showing an ultrahigh specific surface area of 1246 m2 g-1 and potential applications in the fields of water purification and Raman sensing.

17.
Nano Lett ; 23(17): 8319-8325, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643363

RESUMO

Although the topological band theory is applicable to both Fermionic and bosonic systems, the same electronic and phononic topological phases are seldom reported in one natural material. In this work, we show the presence of a dual-higher-order topology in hydrogen-substituted graphdiyne (H-GDY) by first-principles calculations. The intriguing enantiomorphic flat-bands are realized in both electronic and phononic bands of H-GDY, which is confirmed to be an organic 2D second-order topological insulator (SOTI). Most importantly, we found that the topological corner states are pseudospin polarized in H-GDY, exhibiting a clockwise or counterclockwise texture perpendicular to the radial direction. Our results not only identify the existence of the dual-higher-order topology in covalent organic frameworks but also uncover a unique pseudospin polarization-coordinate locking relation, further extending the well-known spin-momentum locking relation in conventional topological insulators.

18.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543046

RESUMO

Graphdiyne (GDY) is considered a very attractive support for metal nanocatalysts due to its unique structure and superior properties. The metal-GDY interaction can significantly affect the performance of catalysts. Herein, GDY nanotubes abundant in in situ formed Cu quantum dots (QDs) (Cu-GDYNT) are prepared using the electrospun polyacrylonitrile nanofibers collected on the surface of electrolytic Cu foil as templates. The diameter of the Cu-GDYNT is controllable and the uniform size of the embedded Cu QDs is about 2.2 nm. And then, the uniformly dispersed and highly active supported catalysts of ruthenium nanoparticles (Rux/Cu-GDYNT) are produced using the Cu-GDYNT as the support. Among them, the Ru3/Cu-GDYNT exhibit outstanding HER performance at all pH levels. Only 17, 67 and 83 mV overpotential is required to reach a current density of 10 mA cm-2 in 1.0 M KOH, 0.5 M H2SO4 and 1.0 M neutral PBS solutions, respectively. The sample exhibits 3000 CV cycle stability and 20 h continuous electrolysis without performance degradation in an alkaline medium. This work provides a new idea for constructing the GDY-supported metal nanocatalysts.

19.
Angew Chem Int Ed Engl ; 63(9): e202316723, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38192242

RESUMO

The manufacture of nitric acid (HNO3 ) consumes large amounts of energy and causes serious environmental pollution. Electrochemical synthesis is regarded as a key way to eliminate carbon emissions from the chemicals industry. The selective electrosynthesis of HNO3 from nitrogen was achieved by controllable assembly of cobalt metal on graphdiyne surface using a powerful tool of electrochemistry at ambient conditions. As an advanced material, graphdiyne (GDY) has a large conjugated structure on its surface and is rich in sp-C triple bond skeleton, which can achieve strong interaction with metal atoms, resulting in incomplete charge transfer between graphdiyne and cobalt atoms. The experimental and theoretical calculation results show that the highly oxidized cobalt on graphdiyne (HOCo/GDY) can selectively and efficiently activate and convert the nitrogen into the key intermediate *NO, which promotes the efficient overall conversion performance of nitrogen to nitric acid. Thus, the highest nitric acid yield (192.0 µg h-1 mg-1 ) and Faradaic efficiency (21.5 %) were achieved at low potentials.

20.
Angew Chem Int Ed Engl ; 63(5): e202317294, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087842

RESUMO

A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation. The absorption and desorption isotherm revealed relatively high specific surface area of these TAB-GDYs up to 788 m2 g-1 for TMTAB-GDY, which decreased as pore size enlarged. TAB-GDYs exhibit certain selectivity for CO2 /N2 (21.9), CO2 /CH4 (5.3), CO2 /H2 (41.8) and C2 H2 /CO2 (2.3). This work has developed a series of boron containing two-dimensional frameworks with clear structures and good stability, and their tunable pore sizes have laid the foundation for future applications in the gas separation field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA