Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(9): 5495-5501, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28823157

RESUMO

Negative transconductance (NTC) devices have been heavily investigated for their potential in low power logical circuit, memory, oscillating, and high-speed switching applications. Previous NTC devices are largely attributed to two working mechanisms: quantum mechanical tunneling, and mobility degradation at high electrical field. Herein we report a systematic investigation of charge transport in multilayer two-dimensional semiconductors (2DSCs) with optimized van der Waals contact and for the first time demonstrate NTC and antibipolar characteristics in multilayer 2DSCs (such as MoS2, WSe2). By varying the measurement temperature, bias voltage, and body thickness, we found the NTC behavior can be attributed to a vertical potential barrier in the multilayer 2DSCs and the competing mechanisms between intralayer lateral transport and interlayer vertical transport, thus representing a new working mechanism for NTC operation. Importantly, this vertical potential barrier arises from inhomogeneous carrier distribution in 2DSC from the near-substrate region to the bulk region, which is in contrast to conventional semiconductors with homogeneous doping defined by bulk dopants. We further show that the unique NTC behavior can be explored for creating frequency doublers and phase shift keying circuits with only one transistor, greatly simplifying the circuit design compared to conventional technology.

2.
Nano Lett ; 15(5): 3030-4, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25879371

RESUMO

Two-dimensional layered semiconductors such as molybdenum disulfide (MoS2) have attracted tremendous interest as a new class of electronic materials. However, there are considerable challenges in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as the back electrodes to achieve ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. We demonstrate for the first time a transparent contact to MoS2 with zero contact barrier and linear output behavior at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator transition can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm(2)/(V s) in MoS2 at low temperature.


Assuntos
Compostos de Boro/química , Dissulfetos/química , Molibdênio/química , Nanotecnologia , Semicondutores , Eletrodos , Grafite/química , Nanoestruturas
3.
Artigo em Inglês | MEDLINE | ID: mdl-38033204

RESUMO

Optimizing the contact structure while reducing the contact resistance in advanced transistors has become an extremely challenging problem. Because the existing techniques are limited to controlling only one semiconductor type, either n- or p-type, owing to their work function differences, significant challenges are encountered in the integration of a contact structure and metal suitable for both n- and p-type semiconductors. This is a formidable drawback of the complementary metal-oxide-semiconductor (CMOS) technology. In this paper, we demonstrate the effectiveness of a metal/graphene/semiconductor (MGrS) as a universal source/drain contact structure for both n- and p-type transistors. The MGrS contact structure significantly enhanced the reverse current density (JR) and reduced the Schottky barrier height (SBH) for both semiconductor types. From the analysis of the SBH values and their relationship with the metal work function, which refers to the S-parameter, the van der Waals contact of graphene (Gr) effectively alleviated the Fermi level (FL) pinning for both semiconductor types, reducing the metal-induced gap states (MIGS) at the Gr/semiconductor interface. Furthermore, Gr effectively modulated the work function of the contact metal to yield a position favorable for each semiconductor type. Consequently, a single MGrS contact structure on a Si substrate resulted in excellent Ohmic contacts in both n- and p-type Si, with SBH values reduced to 0.012 and 0.024 eV for n- and p-type Si, respectively. This new approach for integrating the contact structures of semiconductor types will lead to extended capabilities for high-performance device applications and CMOS logical circuitry.

4.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859707

RESUMO

Transformation of unipolar n-type semiconductor behavior to ambipolar and finally to unipolar p-type behavior in CH3 NH3 PbI3 microplate field-effect transistors by thermal annealing is reported. The photoluminescence spectra essentially maintain the same features before and after the thermal annealing process, demonstrating that the charge transport measurement provides a sensitive way to probe low-concentration defects in perovskite materials.

5.
ACS Nano ; 11(6): 5318-5324, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28199121

RESUMO

Recently, smart contact lenses with electronic circuits have been proposed for various sensor and display applications where the use of flexible and biologically stable electrode materials is essential. Graphene is an atomically thin carbon material with a two-dimensional hexagonal lattice that shows outstanding electrical and mechanical properties as well as excellent biocompatibility. In addition, graphene is capable of protecting eyes from electromagnectic (EM) waves that may cause eye diseases such as cataracts. Here, we report a graphene-based highly conducting contact lens platform that reduces the exposure to EM waves and dehydration. The sheet resistance of the graphene on the contact lens is as low as 593 Ω/sq (±9.3%), which persists in an wet environment. The EM wave shielding function of the graphene-coated contact lens was tested on egg whites exposed to strong EM waves inside a microwave oven. The results show that the EM energy is absorbed by graphene and dissipated in the form of thermal radiation so that the damage on the egg whites can be minimized. We also demonstrated the enhanced dehydration protection effect of the graphene-coated lens by monitoring the change in water evaporation rate from the vial capped with the contact lens. Thus, we believe that the graphene-coated contact lens would provide a healthcare and bionic platform for wearable technologies in the future.

6.
ACS Nano ; 9(11): 11102-8, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26468901

RESUMO

Here we present a general strategy for the fabrication of high-performance organic vertical thin film transistors (OVTFTs) based on the heterostructure of graphene and different organic semiconductor thin films. Utilizing the unique tunable work function of graphene, we show that the vertical carrier transport across the graphene-organic semiconductor junction can be effectively modulated to achieve an ON/OFF ratio greater than 10(3). Importantly, with the OVTFT design, the channel length is determined by the organic thin film thickness rather than by lithographic resolution. It can thus readily enable transistors with ultrashort channel lengths (<200 nm) to afford a delivering current greatly exceeding that of conventional planar TFTs, thus enabling a respectable operation frequency (up to 0.4 MHz) while using low-mobility organic semiconductors and low-resolution lithography. With this vertical device architecture, the entire organic channel is sandwiched and naturally protected between the source and drain electrodes, which function as the self-passivation layer to ensure stable operation of both p- and n-type OVTFTs in ambient conditions and enable complementary circuits with voltage gain. The creation of high-performance and highly robust OVTFTs can open up exciting opportunities in large-area organic macroelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA