Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(38)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236158

RESUMO

Surface-enhanced infrared absorption (SEIRA) spectroscopy is an emerging research field that has received much attention from the research community. Unlike conventional infrared absorption spectroscopy, SEIRA spectroscopy is a surface sensitive technique that exploits the electromagnetic properties of nanostructured substrates to amplify the vibrational signals of adsorbed molecules. Unique advantages like high sensitivity, wide adaptability, and convenient operation allow SEIRA spectroscopy to be applied in qualitative and quantitative analyses for traces of gases, biomolecules, polymers, and so on. In this review, we summarize recent advances in nanostructured substrates for SEIRA spectroscopy, including the developing history and widely accepted SEIRA mechanisms of SEIRA spectroscopy. Most importantly, characteristics and preparation methods of representative SEIRA-active substrates are introduced. In addition, current deficiencies and prospects in the field of SEIRA spectroscopy are discussed.


Assuntos
Nanoestruturas , Espectrofotometria Infravermelho/métodos
2.
Mikrochim Acta ; 189(5): 185, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35396635

RESUMO

Graphene-based materials present unique properties for electrochemical applications, and laser-induced conversion of polyimide to graphene is an emerging route to obtain a high-quality material for sensing. Herein we present compact and low-cost equipment constructed from an open-source 3D printer at which a 3.5-W visible (449 nm) laser was adapted to fabricate laser-induced graphene (LIG) electrodes from commercial polyimide, which resulted in electron transfer kinetic (k0) of 5.6 × 10-3 cm s-1 and reproducibility calculated by relative standard deviation (RSD < 5%) from cyclic voltammograms of [Fe(CN)6]3-/4- using 5 different electrodes. LIG electrodes enabled the simultaneous voltammetric determination of uric acid (+ 0.1 V vs. pseudo-reference) and nitrite (+ 0.4 V vs pseudo-reference), with limit of detection (LOD) values of 0.07 and 0.27 µmol L-1, respectively. Amperometric measurements for the detection of H2O2 (applying + 0.0 V vs. Ag|AgCl|KCl(sat.)) after Prussian blue (PB) modification and ciprofloxacin (applying + 1.2 V vs. Ag|AgCl|KCl(sat.)) were performed under flow conditions, which confirmed the high stability of LIG and LIG-PB surfaces. The LOD values were 1.0 and 0.2 µmol L-1 for H2O2 and ciprofloxacin, respectively. The RSD values (< 12%) obtained for the analysis using three different electrodes attested the precision of LIG electrodes manufactured in two designs. No sample matrix effects on the determination of ciprofloxacin in milk samples were observed  (recoveries between 84 and 96%). The equipment can be built with less than $300 and each LIG electrode costs less than $0.01.


Assuntos
Grafite , Ciprofloxacina , Eletrodos , Grafite/química , Peróxido de Hidrogênio , Lasers , Reprodutibilidade dos Testes
3.
Molecules ; 27(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011386

RESUMO

In this work, few-layer graphene materials were produced from Fe-lignin nanocomposites through a molecular cracking and welding (MCW) method. MCW process is a low-cost, scalable technique to fabricate few-layer graphene materials. It involves preparing metal (M)-lignin nanocomposites from kraft lignin and a transition metal catalyst, pretreating the M-lignin composites, and forming of the graphene-encapsulated metal structures by catalytic graphitization the M-lignin composites. Then, these graphene-encapsulated metal structures are opened by the molecule cracking reagents. The graphene shells are peeled off the metal core and simultaneously welded and reconstructed to graphene materials under a selected welding reagent. The critical parameters, including heating temperature, heating time, and particle sizes of the Fe-lignin composites, have been explored to understand the graphene formation mechanism and to obtain the optimized process parameters to improve the yield and selectivity of graphene materials.

4.
Mikrochim Acta ; 185(4): 246, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616348

RESUMO

An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 µM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 µM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 µA·µM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 µM), and good sensitivity (0.092 µA µM-1 cm-2).


Assuntos
Cisteína/urina , Polímeros de Fluorcarboneto/química , Grafite/química , Nanopartículas Metálicas/química , Paládio/química , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Óxidos/química
5.
Angew Chem Int Ed Engl ; 56(10): 2675-2679, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165179

RESUMO

A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures.

6.
Small Methods ; 7(6): e2201557, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36895068

RESUMO

Reduced graphene-oxide (RGO)-based electrodes in supercapacitors deliver high energy/power capacities compared to typical nanoporous carbon materials. However, extensive critical analysis of literature reveals enormous discrepancies (up to 250 F g-1 ) in the reported capacitance (variation of 100-350 F g-1 ) of RGO materials synthesized under seemingly similar methods, inhibiting an understanding of capacitance variation. Here, the key factors that control the capacitance performance of RGO electrodes are demonstrated by analyzing and optimizing various types of commonly applied electrode fabrication methods. Beyond usual data acquisition parameters and oxidation/reduction properties of RGO, a substantial difference of more than 100% in capacitance values (with change from 190 ± 20 to 340 ± 10 F g-1 ) is found depending on the electrode preparation method. For this demonstration, ≈40 RGO-based electrodes are fabricated from numerous distinctly different RGO materials via typically applied methods of solution (aqueous and organic) casting and compressed powders. The influence of data acquisition conditions and capacitance estimation practices are also discussed. Furthermore, by optimizing electrode processing method, a direct surface area governed capacitance relationship for RGO structures is revealed.

7.
ACS Appl Mater Interfaces ; 15(38): 45095-45105, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37708381

RESUMO

Rapid nondestructive detection of fish freshness is essential to ensure food safety and nutrition. In this study, we demonstrate a conformal temperature/impedance sensing patch for temperature monitoring, as well as freshness classification during fish storage. The optimization of the flexible laser-induced graphene electrodes is studied based on both simulation and experimental validation, and dimensional accuracy of 5‰ and high impedance reproducibility are obtained. A laser-assisted thermal reduction technology is innovatively introduced to directly form a reduced graphene oxide-based temperature-sensitive layer on the surface of a flexible substrate. The comprehensive performance is superior to that of most reported temperature-sensitive devices based on graphene materials. As an application demonstration, the fabricated flexible dual-parameter sensing patch is conformed to the surface of a refrigerated fish. The patch demonstrates the ability to accurately sense low temperatures in a continuous 120 min monitoring, accompanied by no interference from high humidity. Meanwhile, the collected impedance data are imported into the support vector machine model to obtain a freshness classification accuracy of 93.07%. The conformal patch integrated with crosstalk-free dual functions costs less than $1 and supports free customization, providing a feasible methodology for rapid nondestructive detection or monitoring of food quality.


Assuntos
Grafite , Animais , Temperatura , Reprodutibilidade dos Testes , Impedância Elétrica , Qualidade dos Alimentos , Peixes
8.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080095

RESUMO

Combating pathogenic microorganisms in an era of ever-increasing drug resistance is crucial. The aim of the study was to evaluate the antibacterial mechanism of three-compound nanocomposites that were based on graphene materials. To determine the nanomaterials' physicochemical properties, an analysis of the mean hydrodynamic diameter and zeta potential, transmission electron microscope (TEM) visualization and an FT-IR analysis were performed. The nanocomposites' activity toward bacteria species was defined by viability, colony forming units, conductivity and surface charge, cell wall integrity, ATP concentration, and intracellular pH. To ensure the safe usage of nanocomposites, the presence of cytokines was also analyzed. Both the graphene and graphene oxide (GO) nanocomposites exhibited a high antibacterial effect toward all bacteria species (Enterobacter cloacae, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus), as well as exceeded values obtained from exposure to single nanoparticles. Nanocomposites caused the biggest membrane damage, along with ATP depletion. Nanocomposites that were based on GO resulted in lower toxicity to the cell line. In view of the many aspects that must be considered when investigating such complex structures as are three-component nanocomposites, studies of their mechanism of action are crucial to their potential antibacterial use.

9.
Food Chem Toxicol ; 164: 113014, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430331

RESUMO

Different applications have been suggested for graphene nanomaterials (GFNs) in the food and feed chain. However, it is necessary to perform a risk assessment before they become market-ready, and when consumer exposure is demonstrated. For this purpose, the European Food Safety Authority (EFSA) has published a guidance that has been recently updated. In this sense, the aim of this study is to identify and characterise toxicological hazards related to GFNs after oral exposure. Thus, existing scientific literature in relation to in vitro degradation studies, in vitro and in vivo genotoxicity, toxicokinetics data, in vivo oral studies, and other in-depth studies such as effects on the microbiome has been revised. The obtained results showed that the investigations performed up to now did not follow internationally agreed-upon test guidelines. Moreover, GFNs seemed to resist gastrointestinal digestion and were able to be absorbed, distributed, and excreted, inducing toxic effects at different levels, including genotoxicity. Also, dose has an important role as it has been reported that low doses are more toxic than high doses because GFNs tend to aggregate in the digestive system, changing the internal exposure scenario. Thus, further studies including a thorough toxicological evaluation are required to protect consumer's safety.


Assuntos
Grafite , Nanoestruturas , Dano ao DNA , Alimentos , Grafite/toxicidade , Nanoestruturas/toxicidade , Medição de Risco
10.
Polymers (Basel) ; 14(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297843

RESUMO

The electrical properties of nanocomposites based on polyetherimide (PEI) filled with reduced graphene oxide (rGO) and a graphene oxide hybrid material obtained from graphene oxide grafted with poly(monomethyl itaconate) (PMMI) modified with barium titanate nanoparticles (BTN) getting (GO-g-PMMI/BTN) were studied. The results indicated that the nanocomposite filled with GO-g-PMMI/BTN had almost the same electrical conductivity as PEI (1 × 10-11 S/cm). However, the nanocomposite containing 10 wt.% rGO and 10 wt.% GO-g-PMMI/BTN as fillers showed an electrical conductivity in the order of 1 × 10-7 S/cm. This electrical conductivity is higher than that obtained for nanocomposites filled with 10% rGO (1 × 10-8 S/cm). The combination of rGO and GO-g-PMMI/BTN as filler materials generates a synergistic effect within the polymeric matrix of the nanocomposite favoring the increase in the electrical conductivity of the system.

11.
Micromachines (Basel) ; 13(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208308

RESUMO

With the research and the development of graphene-based materials, new sensors based on graphene compound materials are of great significance to scientific research and the consumer market. However, in the past ten years, due to the requirements of sensor accuracy, reliability, and durability, the development of new graphene sensors still faces many challenges in the future. Due to the special structure of graphene, the obtained characteristics can meet the requirements of high-performance sensors. Therefore, graphene materials have been applied in many innovative sensor materials in recent years. This paper introduces the important role and specific examples of sensors based on graphene and its base materials in biomedicine, photoelectrochemistry, flexible pressure, and other fields in recent years, and it puts forward the difficulties encountered in the application of graphene materials in sensors. Finally, the development direction of graphene sensors has been prospected. For the past two years of the COVID-19 epidemic, the detection of the virus sensor has been investigated. These new graphene sensors can complete signal detection based on accuracy and reliability, which provides a reference for researchers to select and manufacture sensor materials.

12.
Environ Sci Pollut Res Int ; 28(26): 34664-34675, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33656705

RESUMO

Graphene-based nanomaterials (GBNs) have been widely used in various fields nowadays. However, they are reported to be highly toxic to some aquatic organisms. However, the multi-organ toxicity caused by pristine graphene (pG) and graphene oxide (GO) to the developing zebrafish (Danio rerio) larvae or juvenile and the underlying mechanisms is not fully known. Therefore, in the present study, the effect of pG and GO with environmental concentrations (0, 5, 10, 15, 20, and 25 µg/L of pG; 0, 0.1, 0.2, 0.3, and 0.4 mg/mL of GO) on multi-organ system in developing zebrafish larvae was experimentally assessed. The pG and GO were found to accumulate in the brain tissue that also caused significant changes in the heart beat and survival rate. The sizes of hepatocytes were reduced. Altered axonal integrity, affecting axon length and pattern in "Tg(mbp:eGFP) transgenic lines" was also observed. In addition, the results indicated pathological effects in major organs and with disrupted mitochondrial structure was quite obvious. The pG and GO bioaccumulation leads to multi organ toxicity in zebrafish larvae. In future, the existence of the current study can be extrapolated to other aquatic system in general and in particularly to humans.


Assuntos
Grafite , Poluentes Químicos da Água , Animais , Embrião não Mamífero , Grafite/toxicidade , Humanos , Larva , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
13.
Nanomicro Lett ; 14(1): 12, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862936

RESUMO

The processing capability is vital for the wide applications of materials to forge structures as-demand. Graphene-based macroscopic materials have shown excellent mechanical and functional properties. However, different from usual polymers and metals, graphene solids exhibit limited deformability and processibility for precise forming. Here, we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide (GO) precursor. The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains. We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity, which becomes the criteria for thermal plastic forming of GO solids. By thermoplastic forming, the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm. The plastic-formed structures maintain the structural integration with outstanding electrical (3.07 × 105 S m-1) and thermal conductivity (745.65 W m-1 K-1) after removal of polymers. The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.

14.
Chemosphere ; 269: 128685, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33153840

RESUMO

Graphene is a promising material with a wide range of future applications that could potentially lead to its transfer from numerous water and terrestrial sources to the sea, thus fate and effects of graphene in the marine ecosystem deserve attention. Within this work, the impact of the short- and long-term exposure (36 h and 24 days) of the marine benthic polychaete Hediste diversicolor to various concentrations (36 h: 0.4, 4, 40 and 400 mg L-1; 24 days: 4 and 40 mg L-1) of the pristine graphene multilayer nanoflakes (of thickness 8-12 nm) was investigated. Experiments revealed a limited toxic effect of graphene on H. diversicolor. Although the polychaetes ingested graphene, no impact on their total energy content was found. The toxic effect expressed by significant elevation of catalase activity indicating activation of defence mechanisms was recorded but only at the early stage of exposure. Activities of other antioxidant and cellular damage biomarkers (SOD, GST, GSH, MDA, CBO) remained unaffected. Moreover, no neurotoxic effect expressed by inhibition of acetylcholinesterase (AChE) activity was observed. Substantial inter-individual variability in the activities of some biomarkers at the end of the long-term experiment was found. Polychaetes were buried deeper in the sediment with graphene than in the controls indicating an escape reaction and avoidance behaviour. The latter may lead to the transfer of graphene from the sediment surface to deeper sediment layers with unknown consequences for the benthic ecosystem.


Assuntos
Grafite , Poliquetos , Poluentes Químicos da Água , Animais , Ecossistema , Grafite/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
15.
Front Chem ; 9: 727574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660529

RESUMO

As a primary goal, this review highlights the role of supramolecular interactions in the assembly of new sustainable materials incorporating functional porphyrins and carbon nanoplatforms as building blocks for photovoltaics advancements.

16.
Adv Colloid Interface Sci ; 285: 102285, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33070104

RESUMO

The current status of knowledge regarding magnetic hybrid structures based on graphene or carbon nanotubes with various forms of iron oxides is reviewed. The paper starts with a summary of the preparation and properties of iron oxide nanoparticles, both untreated and coated with silica or polymer layers. In the next section, organic-inorganic hybrid materials obtained as a result of a combination of graphene or carbon nanotubes and iron chemical compounds are characterized and discussed. These hybrids constitute an increasing percentage of all consumable high performance biomedical, electronic, and energy materials due to their valuable properties and low production costs. The potential of their application as components of materials used in corrosion protection, catalysis, spintronics, biomedicine, photoelectrochemical water splitting and groundwater remediation, as well as magnetic nanoparticles in polymer matrices, are also presented. The last part of this review article is focused on reporting the most recent developments in design and the understanding of the properties of polymer composites reinforced with nanometer-sized iron oxide/graphene and iron oxide/carbon nanotubes hybrid fillers. The discussion presents comparative analysis of the magnetic, electromagnetic shielding, electrical, thermal, and mechanical properties of polymer composites with various iron oxide/graphene structures. It is shown that the introduction of hybrid filler nanoparticles into polymer matrices enhances both the macro- and microproperties of final composites as a result of synergistic effects of individual components and the simultaneous formation of an oriented filler network in the polymer. The reinforcing effect is related to the structure and geometry of hybrid nanoparticles applied as a filler, the interactions between the filler particles, their concentration in a composite, and the method of composite processing.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32523939

RESUMO

Bacterial infections represent nowadays the major reason of biomaterials implant failure, however, most of the available implantable materials do not hold antimicrobial properties, thus requiring antibiotic therapy once the infection occurs. The fast raising of antibiotic-resistant pathogens is making this approach as not more effective, leading to the only solution of device removal and causing devastating consequences for patients. Accordingly, there is a large research about alternative strategies based on the employment of materials holding intrinsic antibacterial properties in order to prevent infections. Between these new strategies, new technologies involving the use of carbon-based materials such as carbon nanotubes, fullerene, graphene and diamond-like carbon shown very promising results. In particular, graphene- and graphene-derived materials (GMs) demonstrated a broad range antibacterial activity toward bacteria, fungi and viruses. These antibacterial activities are attributed mainly to the direct physicochemical interaction between GMs and bacteria that cause a deadly deterioration of cellular components, principally proteins, lipids, and nucleic acids. In fact, GMs hold a high affinity to the membrane proteoglycans where they accumulate leading to membrane damages; similarly, after internalization they can interact with bacteria RNA/DNA hydrogen groups interrupting the replicative stage. Moreover, GMs can indirectly determine bacterial death by activating the inflammatory cascade due to active species generation after entering in the physiological environment. On the opposite, despite these bacteria-targeted activities, GMs have been successfully employed as pro-regenerative materials to favor tissue healing for different tissue engineering purposes. Taken into account these GMs biological properties, this review aims at explaining the antibacterial mechanisms underlying graphene as a promising material applicable in biomedical devices.

18.
Adv Mater ; 31(27): e1901017, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31074927

RESUMO

While theoretical studies predicted the stability and exotic properties of plumbene, the last group-14 cousin of graphene, its realization has remained a challenging quest. Here, it is shown with compelling evidence that plumbene is epitaxially grown by segregation on a Pd1- x Pbx (111) alloy surface. In scanning tunneling microscopy (STM), it exhibits a unique surface morphology resembling the famous Weaire-Phelan bubble structure of the Olympic "WaterCube" in Beijing. The "soap bubbles" of this "Nano WaterCube" are adjustable with their average sizes (in-between 15 and 80 nm) related to the Pb concentration (x < 0.2) dependence of the lattice parameter of the Pd1- x Pbx (111) alloy surface. Angle-resolved core-level measurements demonstrate that a lead sheet overlays the Pd1- x Pbx (111) alloy. Atomic-scale STM images of this Pb sheet show a planar honeycomb structure with a unit cell ranging from 0.48 to 0.49 nm corresponding to that of the standalone 2D topological insulator plumbene.

19.
Nanoscale Res Lett ; 13(1): 42, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29417243

RESUMO

A one-step method which involves exfoliating graphite materials (GIMs) off into graphene materials (GEMs) in aqueous suspension of CL-20 and forming CL-20/graphene materials (CL-20/GEMs) composites by using ball milling is presented. The conversion of mixtures to composite form was monitored by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The impact sensitivities of CL-20/GEM composites were contrastively investigated. It turned out that the energetic nanoscale composites based on CL-20 and GEMs comprising few layers were accomplished. The loading capacity of graphene (reduced graphene oxide, rGO) is significantly less than that of graphene oxide (GO) in CL-20/GEM composites. The formation mechanism was proposed. Via this approach, energetic nanoscale composites based on CL-20 and GO comprised few layers were accomplished. The resulted CL-20/GEM composites displayed spherical structure with nanoscale, ε-form, equal thermal stabilities, and lower sensitivities.

20.
Biosens Bioelectron ; 87: 7-17, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27504792

RESUMO

Graphene is a highly promising material for biosensors due to its excellent physical and chemical properties which facilitate electron transfer between the active locales of enzymes or other biomaterials and a transducer surface. Printing technology has recently emerged as a low-cost and practical method for fabrication of flexible and disposable electronics devices. The combination of these technologies is promising for the production and commercialization of low cost sensors. In this review, recent developments in organo-functionalized graphene and printed biosensor technologies are comprehensively covered. Firstly, various methods for printing graphene-based fluids on different substrates are discussed. Secondly, different graphene-based ink materials and preparation methods are described. Lastly, biosensing performances of printed or printable graphene-based electrochemical and field effect transistor sensors for some important analytes are elaborated. The reported printed graphene based sensors exhibit promising properties with good reliability suitable for commercial applications. Among most reports, only a few printed graphene-based biosensors including screen-printed oxidase-functionalized graphene biosensor have been demonstrated. The technology is still at early stage but rapidly growing and will earn great attention in the near future due to increasing demand of low-cost and disposable biosensors.


Assuntos
Bioimpressão/métodos , Técnicas Biossensoriais/métodos , Grafite/química , Animais , Materiais Biocompatíveis/química , Bioimpressão/economia , Bioimpressão/instrumentação , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Tinta , Modelos Moleculares , Compostos Orgânicos/química , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA