RESUMO
The nanocomposites formed by graphene oxide (GO) and carbazate-modified polyvinyl alcohol (PVA-N) were developed to investigate their multiple properties for wide applications. Their physicochemical characterizations confirmed that the in situ reduced GO (rGO) not only decreased the crystallization but also induced the porous structures inside the nanocomposites. Significantly, it revealed that the comprehensive performance of PVA-N2-2%GO consisted of PVA-N2 with the carbazate degree of substitution (DS) of 7% and the weight ratio (wt%) of 2% GO displayed 79% of tensile elongation and tensile strength of 5.96 N/mm2 (MPa) by tensile testing, glass transition temperature (Tg) of 60.8°C and decomposition temperature (Td) of 303.5°C by TGA and DSC, surface contact angle at 89.4 ± 2.1°, and electrical conductivity of 9.95 × 10-11 S/cm. The abovementioned comprehensive performance was enhanced with the increased amount of in situ rGO, contributed by the high DS of the carbazate group in PVA-N and high amount of GO. The rGO by in situ reduction was the main driving force for enhancing the multiple properties inside the nanocomposites.
RESUMO
In this study, we describe the synthesis of graphene oxide functionalized with the ionic liquid 1-butyl-3-aminopropyl imidazolium chloride and its use as an adsorbent for the dispersive solid-phase microextraction (micro SPE) of four anabolic steroids and six ß-blockers from aqueous samples of environmental importance, prior to their HPLC-diode array detector analysis. As the ionic liquid is covalently attached to graphene oxide sheets, it is made possible for it to participate in the dispersive micro SPE procedure. The limits of detection and limits of quantification of the proposed method were found to be in the range of 7-23ng/L and between 20 and 70ng/L, respectively. The linearity was satisfactory, with the determination coefficients to range from 0.9940 to 0.9998 while the within- and between-day relative standard deviation of the method ranged between 3.1 and 7.6% and from 4.0 to 8.5%, respectively. In order to test the applicability of the proposed method in real-life samples, the effluent from a municipal wastewater treatment plant as well as natural water samples from two rivers and a lake were collected and analyzed. After the analysis of samples, the effluent from municipal wastewater treatment plant was fortified with the analytes, at concentrations equal to 2 and 10 times the LOQs. Recoveries were calculated after subtracting the native (no-spike) concentrations of analytes, when needed. All the recoveries were in the range of 87-98%. A comparison study attests to the superiority of the developed nanomaterial over graphene oxide and graphene for the dispersive micro SPE of steroids and ß-blockers.