Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542925

RESUMO

The study investigated the possibility of using chitin flakes as an unconventional sorbent for the removal of orthophosphates and nitrates from greenhouse wastewater (GW). The effluent parameters were as follows: 66.2 mg P-PO4/L, 566.0 mg N-NO3/L, 456.0 mg S-SO4/L, 13.7 mg Cl-/L, 721 mg Ca2+/L, 230 mg Mg2+/L, hardness 11.3 °dH, and pH 5.4. The scope of the research included determinations of the influence of pH on GW composition and the efficiency of nutrient sorption, the kinetics of nutrient sorption, the influence of the dose of chitin flakes on the effectiveness of nutrient binding and the maximum sorption capacity of the sorbent. The sorption of P-PO4 on the tested sorbent was most effective at pH 4, and the sorption of N-NO3 at pH 2. The equilibrium time of sorption of both nutrients from GW to chitin depended on the sorbent dose and ranged from 150 to 180 min. The sorbent dose of 40 g/L enabled removing 90% of orthophosphates and 5.7% of nitrates from the wastewater. The maximum sorption capacity of CH towards P-PO4 and N-NO3 contained in the GW was 3.20 mg/g and 3.04 mg/g, respectively. In turn, the sorption of calcium and magnesium ions on chitin flakes was completely ineffective.

2.
Environ Technol ; 36(13-16): 1759-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25608464

RESUMO

High phosphate content in wastewater is currently a major issue faced by the North American greenhouse industry. Phosphate-sorbing material filters could provide a means of removing phosphate from wastewater prior to discharge to the environment, but the characterization of economically viable materials and specific recommendations for greenhouse wastewater are not available. Batch and column experiments were used to examine the capacity of two calcium-based waste materials, basic oxygen furnace slag and a concrete waste material, to remove phosphate from greenhouse nutrient solution at varied operating conditions. Material columns operating at a hydraulic retention time (HRT) of 3 h consistently removed >99% of influent phosphate at a concentration of 60 mg/L over repeated applications and demonstrated high phosphate retention capacity (PRC) of 8.8 and 5.1 g P/kg for slag and concrete waste, respectively. Both materials also provided some removal of the micronutrients Fe, Mn and Zn. Increasing HRT to 24 h increased P retention capacity of slag to >10.5 g P/kg but did not improve retention by concrete waste. Decreasing influent phosphate concentration to 20 mg/L decreased PRC to 1.64 g P/kg in concrete waste columns, suggesting fluctuations in greenhouse wastewater composition will affect filter performance. The pH of filter effluent was closely correlated to final P concentration and can likely be used to monitor treatment effectiveness. This study demonstrated that calcium-based materials are promising for the removal of phosphate from greenhouse wastewater, and worthy of further research on scaling up the application to a full-sized system.


Assuntos
Fosfatos/isolamento & purificação , Compostos de Fósforo/química , Ultrafiltração/métodos , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Agricultura/métodos , Resíduos Industriais/prevenção & controle , Teste de Materiais , Fosfatos/química , Águas Residuárias/análise , Poluentes Químicos da Água/química
3.
Environ Technol ; 35(21-24): 2852-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176490

RESUMO

Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)4: PO4‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.


Assuntos
Agricultura , Compostos de Cálcio/química , Óxidos/química , Fosfatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Precipitação Química , Concentração de Íons de Hidrogênio , Águas Residuárias/química
4.
Sci Total Environ ; 892: 164757, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308006

RESUMO

The research was aimed at determining the possibility of recovering part of nutrients by precipitation from greenhouse wastewater (GW) from soilless tomato cultivation. Analyses included such elements as: P, S, N, Cl, Ca, Mg, K, Mo, Mn, Fe, Zn, Cu, and B. Three alkalizing agents were tested in a pH range of 6.5-12.0: Ca(OH)2, KOH, and NH4OH, which simultaneously enrich greenhouse wastewater in calcium, potassium, and nitrogen. It was determined what dose of the alkalizing agent should be used, how the composition of the treated GW will change, how much and what kind of sludge will be formed, what will be the stability and technical possibility of sediment separation, and whether the type of alkalizing agent affects the course of the process. Precipitation triggered by the alkalizing agents proved to be an effective method for the recovery of phosphorus, calcium, magnesium, manganese, and boron, while it turned out ineffective in the case of the other elements tested, including nitrogen and potassium. Phosphorus recovery depended mainly on GW pH and forms of phosphate ions corresponding to this pH, and not on the alkalizing agent type. The pH value adjustment to pH = 9 for KOH and NH4OH and to pH = 9.5 for Ca(OH)2 ensured <99 % phosphorus recovery, which corresponded to P concentration in GW below 1 mgP/L and to the applied Ca(OH)2, KOH, and NH4OH doses of 0.20 g/L, 0.28 g/L, and 0.08 g/L, respectively. The highest P contents in the sludge were determined at pH = 7 and reached 18.0 %, 16.8 %, and 16.3 % in the experimental series with Ca(OH)2, KOH, and NH4OH, respectively. The sludge volume index increase along with pH increase up to pH = 10.5 for KOH and to pH = 11 for Ca(OH)2 and NH4OH.


Assuntos
Solanum lycopersicum , Águas Residuárias , Fósforo , Esgotos/química , Cálcio , Minerais , Potássio , Nitrogênio/análise
5.
Environ Sci Pollut Res Int ; 24(2): 1578-1587, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27787703

RESUMO

Four laboratory-scale baffled subsurface-flow constructed wetlands (BSCWs) were established for the treatment of greenhouse wastewater containing high levels of nitrate and sulfate in the present study. Each BSCW microcosm involved a treatment zone and another post-treatment zone with a surface area ratio of 2:1. Evenly mixed straws of carnation and rose (w/w: 1/1), two common ornamental flowers, were supplemented as an organic carbon source into the treatment zone through a hydrolysis zone (CW 1), decentralized vertically installed perforated pipes (CW 2), and centralized pipes (CW 3 in the figures), except the blank system. Removals and transformations of nitrogen and sulfate as well as carbon release in the BSCWs were investigated and comparatively assessed. Results showed that the supplements of flower straws could greatly enhance both the nitrate and sulfate removals, and good performance was achieved during the beginning operation period of 30 days, followed by decline due to insufficient organic carbon supply. Nitrate removal efficiency was significantly higher and more stable compared to sulfate. The highest removal rates of nitrate and sulfate were achieved in the CW 3, with a mean value of 4.33 g NO3--N·m-2 d-1 and 2.74 g SO42--S·m-2 d-1, respectively, although the differences among the experimental microcosms were not statistically significant. However, almost the same TN removal rate (3.40-3.47 g N·m-2 d-1) was obtained due to the productions of NO2--N and NH4+-N and leaching of organic N from the straws. High contents of organic carbon and colored substance were leached from the straws during the initial 10 days, but dropped rapidly to low levels, and could hardly determined after 30 days operation. The post-treatment zone could further eliminate various contaminants, but the capability was limited. Inorganic carbon (IC) concentration was detected to be a highly good indicator for the estimation of nitrate and sulfate removal efficiencies of the BSCWs, particularly for nitrate.


Assuntos
Carbono/metabolismo , Ambiente Controlado , Flores/química , Gerenciamento de Resíduos/métodos , Águas Residuárias/química , Áreas Alagadas , Biodegradação Ambiental , Hidrólise , Nitratos/isolamento & purificação , Nitratos/metabolismo , Sulfatos/isolamento & purificação , Sulfatos/metabolismo
6.
Environ Sci Pollut Res Int ; 23(18): 18165-74, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27259964

RESUMO

This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides.


Assuntos
Chlorella vulgaris/metabolismo , Nitrogênio/metabolismo , Praguicidas/metabolismo , Fosfatos/metabolismo , Scenedesmus/metabolismo , Poluentes Químicos da Água/metabolismo , Água/química , Fósforo/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA