Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Immunopharmacol Immunotoxicol ; : 1-16, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134472

RESUMO

BACKGROUND: Gremlin1 is a multifunctional protein whose expression is demonstrated to be involved in a series of physiology and pathological processes. The association between Gremlin1 and apcial periodontitis (AP) has been established. M1-polarized macrophages are crucial immune cells that exacerbate the progression of apical periodontal inflammatory response, but the function of Gremlin1 during macrophages activation in periapical lesions is still unclear. This study attempts to explore the regulatory effects of Gremlin1 on macrophage polarization on apical periodontitis microenviroment. METHODS: Clinical specimens were used to determine the expression of Gremlin1 in periapical tissues by immunohistochemical (IHC) staining. Then, the disease models of periapical inflammation in rats were established, and adenovirus- associated virus (AAVs) was used to blockade Gremlin1 expression. Lentivirus carrying sh-Gremlin1 particles were used to transfect THP-1 induced M1-subtype macrophages. To assess the expression of associated molecules, Western-blot, immunofluorescence staining were performed. RESULTS: Gremlin1 was significantly up-regulated in the periapical tissues of subjects with AP as identified by IHC staining, and positively correlated with levels of M1 macrophage-associated genes. Rats AP model with inhibition of Gremlin1 in periapical lesions exhibited limited infiltration of macrophages and decreased expression of M1 macrophage-related genes in periapical lesions. Furthermore, Gremlin1 blockade substantially decreased the Notch1/Hes1 signaling pathway activation level. The in vitro experiments confirmed the above results. CONCLUSION: Taken together, current study illustrated that the Gremlin1 suppression in periapical lesions inhibited M1 macrophage polarization through Notch1/Hes1 axis. Moreover, Gremlin1 may act as a potential candidate in the treatment of AP.

2.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125809

RESUMO

A relevant role of osteopontin (OPN) and gremlin 1 (Grem1) in regulating cardiac tissue remodeling and formation of heart failure (HF) are documented, with the changes of OPN and Grem1 levels in blood plasma due to acute ischemia, ischemic heart disease-induced advanced HF or dilatative cardiomyopathy being the primary focus in most of these studies. However, knowledge on the early OPN and Grem1 proteins expression changes within cardiomyocytes during remodeling due to chronic ischemia remains insufficient. The aim of this study was to determine the OPN and Grem1 proteins expression changes in human cardiomyocytes at different stages of ischemic HF. A semi-quantitative immunohistochemical analysis was performed in 105 myocardial tissue samples obtained from the left cardiac ventricles. Increased OPN immunostaining intensity was already detected in the stage A HF group, compared to the control group (p < 0.001), and continued to increase in the stage B HF (p < 0.001), achieving the peak of immunostaining in the stages C/D HF group (p < 0.001). Similar data of Grem1 immunostaining intensity changes in cardiomyocytes were documented. Significantly positive correlations were detected between OPN, Grem1 expression in cardiomyocytes and their diameter as well as the length, in addition to positive correlation between OPN and Grem1 expression changes within cardiomyocytes. These novel findings suggest that OPN and Grem1 contribute significantly to reorganization of cellular geometry from the earliest stage of cardiomyocyte remodeling, providing new insights into the ischemic HF pathogenesis.


Assuntos
Insuficiência Cardíaca , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia Miocárdica , Miócitos Cardíacos , Osteopontina , Osteopontina/metabolismo , Osteopontina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Pessoa de Meia-Idade , Feminino , Idoso
3.
Dev Biol ; 482: 34-43, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902310

RESUMO

The DAN gene family (DAN, Differential screening-selected gene Aberrant in Neuroblastoma) is a group of genes that is expressed during development and plays fundamental roles in limb bud formation and digitation, kidney formation and morphogenesis and left-right axis specification. During adulthood the expression of these genes are associated with diseases, including cancer. Although most of the attention to this group of genes has been dedicated to understanding its role in physiology and development, its evolutionary history remains poorly understood. Thus, the goal of this study is to investigate the evolutionary history of the DAN gene family in vertebrates, with the objective of complementing the already abundant physiological information with an evolutionary context. Our results recovered the monophyly of all DAN gene family members and divide them into five main groups. In addition to the well-known DAN genes, our phylogenetic results revealed the presence of two new DAN gene lineages; one is only retained in cephalochordates, whereas the other one (GREM3) was only identified in cartilaginous fish, holostean fish, and coelacanth. According to the phyletic distribution of the genes, the ancestor of gnathostomes possessed a repertoire of eight DAN genes, and during the radiation of the group GREM1, GREM2, SOST, SOSTDC1, and NBL1 were retained in all major groups, whereas, GREM3, CER1, and DAND5 were differentially lost.


Assuntos
Sequência de Bases/genética , Proteínas de Ciclo Celular/genética , Sequência Conservada/genética , Desenvolvimento Embrionário/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Anfíbios , Animais , Aves , Padronização Corporal/genética , Citocinas/genética , Evolução Molecular , Peixes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Botões de Extremidades/crescimento & desenvolvimento , Mamíferos , Morfogênese/genética , Répteis
4.
J Cell Physiol ; 238(5): 966-975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890751

RESUMO

Gremlin-1 (GR1) is a novel adipokine that is highly expressed in human adipocytes and has been shown to inhibit the BMP2/4-TGFb signaling pathway. It has an effect on insulin sensitivity. Elevated levels of Gremlin have been shown to lead to insulin resistance in skeletal muscle, adipocytes, and hepatocytes. In this study, we investigated the effect of GR1 on hepatic lipid metabolism under hyperlipidemic conditions and explored the molecular mechanisms associated with GR1 by in vitro and in vivo studies. We found that palmitate increased GR1 expression in visceral adipocytes. Recombinant GR1 increased lipid accumulation, lipogenesis, and ER stress markers in cultured primary hepatocytes. Treatment with GR1 increased EGFR expression and mTOR phosphorylation and reduced autophagy markers. EGFR or rapamycin siRNA reduced the effects of GR1 on lipogenic lipid deposition and ER stress in cultured hepatocytes. Administration of GR1 via the tail vein induced lipogenic proteins and ER stress while suppressing autophagy in the livers of experimental mice. Suppression of GR1 by in vivo transfection reduced the effects of a high-fat diet on hepatic lipid metabolism, ER stress, and autophagy in mice. These results suggest that the adipokine GR1 promotes hepatic ER stress due to the impairment of autophagy, ultimately causing hepatic steatosis in the obese state. The current study demonstrated that targeting GR1 may be a potential therapeutic approach for treating metabolic diseases, including metabolic-associated fatty liver disease (MAFLD).


Assuntos
Adipocinas , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Autofagia , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Receptores ErbB/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/farmacologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/genética , Regulação para Cima
5.
Am J Physiol Renal Physiol ; 324(6): F544-F557, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102688

RESUMO

Leptin regulates energy balance via leptin receptors expressed in central and peripheral tissues, but little is known about leptin-sensitive kidney genes and the role of the tubular leptin receptor (Lepr) in response to a high-fat diet (HFD). Quantitative RT-PCR analysis of Lepr splice variants A, B, and C revealed a ratio of ∼100:10:1 in the mouse kidney cortex and medulla, with medullary levels being ∼10 times higher. Leptin replacement in ob/ob mice for 6 days reduced hyperphagia, hyperglycemia, and albuminuria, associated with normalization of kidney mRNA expression of molecular markers of glycolysis, gluconeogenesis, amino acid synthesis, and megalin. Normalization of leptin for 7 h in ob/ob mice did not normalize hyperglycemia or albuminuria. Tubular knockdown of Lepr [Pax8-Lepr knockout (KO)] and in situ hybridization revealed a minor fraction of Lepr mRNA in tubular cells compared with endothelial cells. Nevertheless, Pax8-Lepr KO mice had lower kidney weight. Moreover, while HFD-induced hyperleptinemia, increases in kidney weight and glomerular filtration rate, and a modest blood pressure lowering effect were similar compared with controls, they showed a blunted rise in albuminuria. Use of Pax8-Lepr KO and leptin replacement in ob/ob mice identified acetoacetyl-CoA synthetase and gremlin 1 as tubular Lepr-sensitive genes that are increased and reduced by leptin, respectively. In conclusion, leptin deficiency may increase albuminuria via systemic metabolic effects that impinge on kidney megalin expression, whereas hyperleptinemia may induce albuminuria by direct tubular Lepr effects. Implications of Lepr variants and the novel tubular Lepr/acetoacetyl-CoA synthetase/gremlin 1 axis remain to be determined.NEW & NOTEWORTHY This study provides new insights into kidney gene expression of leptin receptor splice variants, leptin-sensitive kidney gene expression, and the role of the leptin receptor in renal tubular cells for the response to diet-induced hyperleptinemia and obesity including albuminuria.


Assuntos
Hiperglicemia , Leptina , Animais , Camundongos , Albuminúria/genética , Células Endoteliais/metabolismo , Expressão Gênica , Túbulos Renais/metabolismo , Leptina/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores para Leptina/genética , RNA Mensageiro
6.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L270-L276, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401390

RESUMO

Pro-proliferative, M2-like polarization of macrophages is a critical step in the development of fibrosis and remodeling in chronic lung diseases such as pulmonary fibrosis and pulmonary hypertension. Macrophages in healthy and diseased lungs express gremlin 1 (Grem1), a secreted glycoprotein that acts in both paracrine and autocrine manners to modulate cellular function. Increased Grem1 expression plays a central role in pulmonary fibrosis and remodeling, however, the role of Grem1 in M2-like polarization of macrophages has not previously been explored. The results reported here show that recombinant Grem1 potentiated M2-like polarization of mouse macrophages and bone marrow-derived macrophages (BMDMs) in response to the Th2 cytokines IL4 and IL13. Genetic depletion of Grem1 in BMDMs inhibited M2 polarization while exogenous gremlin 1 could partially rescue this effect. Taken together, these findings reveal that gremlin 1 is required for M2-like polarization of macrophages.NEW & NOTEWORTHY We show here that gremlin 1 potentiated M2 polarization of mouse bone marrow-derived macrophages (BMDMs) in response to the Th2 cytokines IL4 and IL13. Genetic depletion of Grem1 in BMDMs inhibited M2 polarization while exogenous gremlin 1 partially rescued this effect. Taken together, these findings reveal a previously unknown requirement for gremlin 1 in M2 polarization of macrophages and suggest a novel cellular mechanism promoting fibrosis and remodeling in lung diseases.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Interleucina-4/genética , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fibrose
7.
Breast Cancer Res ; 25(1): 128, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880751

RESUMO

BACKGROUND: Gremlin-1 (GREM1) and Gremlin-2 (GREM2) are bone morphogenetic protein antagonists that play important roles in organogenesis, tissue differentiation, and tissue homeostasis. Although GREM1 has been reported to be involved in promoting various cancers, little has been reported about effects of GREM2 on cancer. Recently, it has been reported that GREM2 can inhibit adipogenesis in adipose-derived stromal/stem cells. However, as an inhibitor of adipogenesis, the role of GREM2 in cancer progression is not well understood yet. METHODS: Pre-adipocyte 3T3-L1 cells overexpressing mock or Grem2 were established using a lentiviral transduction system and differentiated into adipocytes-mock and adipocytes-Grem2, respectively. To investigate the effect of adipocyte-Grem2 on breast cancer cells, we analyzed the proliferative and invasion abilities of spheroids using a 3D co-culture system of breast cancer cells and adipocytes or conditioned medium (CM) of adipocytes. An orthotopic breast cancer mouse model was used to examine the role of adipocytes-Grem2 in breast cancer progression. RESULTS: Grem2 overexpression suppressed adipogenesis of 3T3-L1 cells. Proliferative and invasion abilities of spheroids formed by co-culturing MTV/TM-011 breast cancer cells and adipocytes-Grem2 were significantly reduced compared to those of spheroids formed by co-culturing MTV/TM-011 cells and adipocytes-mock. Compared to adipocytes-mock, adipocytes-Grem2 showed decreased mRNA expression of several adipokines, notably IL-6. The concentration of IL-6 in the CM of these cells was also decreased. Proliferative and invasive abilities of breast cancer cells reduced by adipocytes-Grem2 were restored by IL-6 treatment. Expression levels of vimentin, slug, and twist1 in breast cancer cells were decreased by treatment with CM of adipocytes-Grem2 but increased by IL-6 treatment. In orthotopic breast cancer mouse model, mice injected with both MTV/TM-011 cells and adipocytes-Grem2 showed smaller primary tumors and lower lung metastasis than controls. However, IL-6 administration increased both the size of primary tumor and the number of metastatic lung lesions, which were reduced by adipocytes-Grem2. CONCLUSIONS: Our study suggests that GREM2 overexpression in adipocytes can inhibit adipogenesis, reduce the expression and secretion of several adipokines, including IL-6, and ultimately inhibit breast cancer progression.


Assuntos
Adipogenia , Neoplasias da Mama , Animais , Camundongos , Adipócitos/metabolismo , Adipocinas/metabolismo , Diferenciação Celular/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias da Mama/metabolismo
8.
Biochem Biophys Res Commun ; 656: 53-62, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-36958255

RESUMO

Type 1 alveolar epithelial cells (AT1s) and type 2 alveolar epithelial cells (AT2s) regulate the structural integrity and function of alveoli. AT1s mediate gas exchange, whereas AT2s serve multiple functions, including surfactant secretion and alveolar repair through proliferation and differentiation into AT1s as progenitors. However, mechanisms regulating AT2 proliferation and differentiation remain unclear. Here we demonstrate that Gremlin, an intrinsic inhibitor of bone morphogenetic protein (BMP), induces AT2 proliferation and differentiation. Transient overexpression of Gremlin in rat lungs by adenovirus vector delivery suppressed BMP signaling, induced proliferation of AT2s and the production of Bmp2, which in turn led to the recovery of BMP signaling and induced AT2 differentiation into AT1s. Bleomycin-induced lung injury upregulated Gremlin and showed a similar time course of biomarker expression comparable to the adenovirus model. TGF-ß and IL-1ß induced Gremlin expression in fibroblasts. Taken together, our findings implicate that Gremlin expression during lung injury leads to precisely timed inhibition of BMP signaling and activates AT2s, leading to alveolar repair.


Assuntos
Células Epiteliais Alveolares , Lesão Pulmonar , Ratos , Animais , Células Epiteliais Alveolares/metabolismo , Lesão Pulmonar/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células
9.
J Biochem Mol Toxicol ; 37(9): e23404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352019

RESUMO

The role and mechanism of Gremlin-1 in osteoarthritis (OA) were expected to be probed in this study. Firstly, an in vitro OA model was constructed by stimulating human chondrocyte cell line CHON-001 with IL-1ß. Next, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were utilized for assessing the effect of IL-1ß with different concentrations (5, 10, and 20 ng/mL) on the activity and Gremlin-1 messenger RNA of CHON-001 cells, respectively. Besides, the influence of knocking down/over-expressing Gremlin-1 on the inflammatory factors (IL-6, TNF-α, IL-18 and PGE2), oxidative stress-related substances (malondialdehyde [MDA]; superoxide dismutase [SOD]; lactate dehydrogenase [LDH]), extracellular matrix (ECM) degradation-related proteins, and mitogen-activated protein kinase (MAPK) pathway proteins in IL-1ß-stimulated CHON-001 cells were tested by enzyme-linked immunosorbent assay, related kits, qRT-PCR, and western blot, respectively. IL-1ß inhibited CHON-001 cell proliferation and upregulated Gremlin-1 expression in a concentration-dependent manner. Overexpression of Gremlin-1 increased the IL-6, TNF-α, IL-18, PGE2, and MDA levels, enhanced the LDH activity, and decreased the SOD activity in IL-1ß-induced CHON-001 cells; while the effect of Gremlin-1 knockdown on the above factors was in contrast with that of the overexpression. Furthermore, overexpression of Gremlin-1 upregulated protein expression of matrix metalloproteinase (MMP)-3, MMP-13, and ADAMTS4 while downregulated protein expression of collagen III, aggrecan, and SOX-9 in IL-1ß-stimulated CHON-001 cells. Besides, overexpression of Gremlin-1 increased the p-p38/p38 value while decreased the p-JNK/JNK value in L-1ß-stimulated CHON-001 cells; however, knockdown of Gremlin-1 reversed the above results. Gremlin-1 may promote IL-1ß-stimulated CHON-001 cell inflammation and ECM degradation by activating the MAPK signaling pathway.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Condrócitos/metabolismo , Interleucina-18/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Transdução de Sinais , Osteoartrite/metabolismo , Matriz Extracelular/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , MicroRNAs/metabolismo
10.
Mol Carcinog ; 61(8): 764-775, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638711

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide because of metastasis. An increasing number of studies have reported that cancer-associated fibroblasts (CAFs) have emerged as the largest component of the stroma and play a critical role in tumor-promoting processes. However, the effects of CAFs on cancer progression and the sensitivity of hepatoma cells to sorafenib are not well characterized. Here, we identified the proteome of CAF-derived exosomes, and unveiled that exosomal Gremlin-1 derived from CAFs contributes to epithelial-mesenchymal transition (EMT) of hepatoma cells and the decrease of the sorafenib sensitivity through regulating Wnt/ß-catenin and BMP signaling pathways. Compared to control subjects, the level of plasma exosomal Gremlin-1 was significantly increased in HCC patients. Further studies indicated that plasma exosomal Gremlin-1 may predict sorafenib response in HCC patients. Collectively, our findings uncover CAFs-derived Gremlin-1-rich exosomes promote EMT and decrease the sensitivity of hepatoma cells to sorafenib by Wnt/ß-catenin and BMP signaling.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , MicroRNAs , Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Sorafenibe/farmacologia , beta Catenina/metabolismo
11.
Cell Mol Life Sci ; 78(24): 7917-7923, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34731251

RESUMO

Gremlin-1 is part of the TGF-ß superfamily and is a BMP antagonist that blocks BMP signalling to precisely control BMP gradients. Gremlin-1 is primarily involved in organogenesis and limb patterning however, has recently been described as being involved in fibrotic diseases. Initially described as a key factor involved in diabetic kidney fibrosis due to being induced by high glucose, it has now been described as being associated with lung, liver, eye, and skin fibrosis. This suggests that it is a key conserved molecule mediating fibrotic events irrespective of organ. It appears that Gremlin-1 may have effects mediated by BMP-dependent and independent pathways. The aim of this review is to evaluate the role of Gremlin-1 in fibrosis, its mechanisms and if this can be targeted therapeutically in fibrotic diseases, which currently have very limited treatment options and are highly prevalent.


Assuntos
Fibrose/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cicatrização , Animais , Humanos
12.
Genes Dev ; 28(10): 1085-100, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24788093

RESUMO

Glioblastomas are the most prevalent and lethal primary brain tumor and are comprised of hierarchies with self-renewing cancer stem cells (CSCs) at the apex. Like neural stem cells (NSCs), CSCs reside in functional niches that provide essential cues to maintain the cellular hierarchy. Bone morphogenetic proteins (BMPs) instruct NSCs to adopt an astrocyte fate and are proposed as anti-CSC therapies to induce differentiation, but, paradoxically, tumors express high levels of BMPs. Here we demonstrate that the BMP antagonist Gremlin1 is specifically expressed by CSCs as protection from endogenous BMPs. Gremlin1 colocalizes with CSCs in vitro and in vivo. Furthermore, Gremlin1 blocks prodifferentiation effects of BMPs, and overexpression of Gremlin1 in non-CSCs decreases their endogenous BMP signaling to promote stem-like features. Consequently, Gremlin1-overexpressing cells display increased growth and tumor formation abilities. Targeting Gremlin1 in CSCs results in impaired growth and self-renewal. Transcriptional profiling demonstrated that Gremlin1 effects were associated with inhibition of p21(WAF1/CIP1), a key CSC signaling node. This study establishes CSC-derived Gremlin1 as a driving force in maintaining glioblastoma tumor proliferation and glioblastoma hierarchies through the modulation of endogenous prodifferentiation signals.


Assuntos
Glioma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Ciclo Celular/genética , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
13.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163075

RESUMO

Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Cromatografia de Afinidade/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Recombinantes/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/agonistas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Proteínas Recombinantes/genética
14.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216203

RESUMO

Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Condrócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoblastos/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Condrogênese/fisiologia , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia
15.
Inflammopharmacology ; 30(3): 843-853, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35441352

RESUMO

The changed biomechanical environment of chondrocytes elicited by altered extracellular matrix is reported to accelerate the progression of OA. MicroRNAs (miRNAs or miRs) have emerged as major regulators in chondrocyte function. Hence, we explored effect of miR-23a/b-3p on OA in regulating chondrocyte growth. The medial meniscus and anterior cruciate ligaments of right knee was removed to induce a mouse model of OA. miR-23a/b-3p and Gremlin1 (Grem1) expressions in OA were determined by RT-qPCR. Dual luciferase reporter gene assay was conducted to assess their relationship in the context of OA. Loss- and gain-of-function assays were adopted to clarify their effects on OA by determining the release of pro-inflammatory proteins and the apoptosis of chondrocytes. RT-qPCR determined increased miR-23a/b-3p expression and decreased Grem1 expression in the setting OA. Inhibiting miR-23a/b-3p or overexpressing Grem1 activated transforming growth factor-ß/solvated metal atom dispersed 3 (TGF-ß/Smad) signaling to prevent OA development. Silencing Grem1 ablated suppressive effects of miR-23a/b-3p inhibitor on the release of pro-inflammatory proteins and the apoptosis of chondrocytes. To conclude, inhibition of miR-23a/b-3p delays OA progression through Grem1-mediated activation of TGF-ß/Smad signaling, contributing to deepen understanding of the pathogenesis of OA.


Assuntos
MicroRNAs , Osteoartrite , Animais , Apoptose , Condrócitos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , MicroRNAs/genética , Osteoartrite/patologia , Fator de Crescimento Transformador beta/metabolismo
16.
Biol Reprod ; 105(5): 1205-1220, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34333627

RESUMO

Members of the differential screening-selected gene aberrative in neuroblastoma (DAN) protein family are developmentally conserved extracellular binding proteins that antagonize bone morphogenetic protein (BMP) signaling. This protein family includes the Gremlin proteins, GREM1 and GREM2, which have key functions during embryogenesis and adult physiology. While BMPs play essential roles in ovarian follicle development, the role of the DAN family in female reproductive physiology is less understood. We generated mice null for Grem2 to determine its role in female reproduction in addition to screening patients with primary ovarian insufficiency (POI) for variants in GREM2. Grem2-/- mice are viable, but female Grem2-/- mice have diminished fecundity and irregular estrous cycles. This is accompanied by significantly reduced production of ovarian anti-Müllerian hormone (AMH) from small growing follicles, leading to a significant decrease in serum AMH. Surprisingly, as AMH is a well-established marker of the ovarian reserve, morphometric analysis of ovarian follicles showed maintenance of primordial follicles in Grem2-/- mice like wild-type (WT) littermates. While Grem2 mRNA transcripts were not detected in the pituitary, Grem2 is expressed in hypothalami of WT female mice, suggesting the potential for dysfunction in multiple tissues composing the hypothalamic-pituitary-ovarian axis that contribute to the subfertility phenotype. Additionally, screening 106 women with POI identified one individual with a heterozygous variant in GREM2 that lies within the predicted BMP-GREM2 interface. In total, these data suggest that Grem2 is necessary for female fecundity by playing a novel role in regulating the HPO axis and contributing to female reproductive disease.


Assuntos
Citocinas/genética , Ciclo Estral/genética , Fertilidade/genética , Insuficiência Ovariana Primária/genética , Transdução de Sinais , Animais , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Periodicidade
17.
Eur J Clin Invest ; 51(7): e13539, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33729579

RESUMO

BACKGROUND: Gremlin-1 is a cystine knot protein and is expressed in organs developing fibrosis. Transient ischaemia leads to myocardial fibrosis, a major determinant of impaired myocardial function. MATERIALS AND METHODS: Expression of Gremlin-1 was investigated in infarcted myocardium by real-time PCR, Western blot analysis, histological and immunohistochemistry staining. We further elaborated the colocalization of Gremlin-1 and TGF-ß proteins by confocal microscopy and co-immunoprecipitation experiments. The interaction between Gremlin-1 and TGF-ß was analysed by photon correlation spectroscopy. Gremlin-1 modulation of the TGF-ß-dependent collagen I synthesis in fibroblasts was investigated using ELISA and immunohistochemistry experiments. The effect of prolonged administration of recombinant Gremlin-1 on myocardial function following ischaemia/reperfusion was accessed by echocardiography and immunohistochemistry. RESULTS: Gremlin-1 is expressed in myocardial tissue and infiltrating cells after transient myocardial ischaemia (P < .05). Gremlin-1 colocalizes with the pro-fibrotic cytokine transforming growth factor-ß (TGF-ß) expressed in fibroblasts and inflammatory cell infiltrates (P < .05). Gremlin-1 reduces TGF-ß-induced collagen production of myocardial fibroblasts by approximately 20% (P < .05). We found that Gremlin-1 binds with high affinity to TGF-ß (KD  = 54 nmol/L) as evidenced by photon correlation spectroscopy and co-immunoprecipitation. intravenous administration of m Gremlin-1-Fc, but not of equivalent amount of Fc control, significantly reduced infarct size by approximately 20%. In the m Gremlin-1-Fc group, infarct area was reduced by up to 30% in comparison with mice treated with Fc control (I/LV: 4.8 ± 1.2% vs 6.0 ± 1.2% P < .05; I/AaR: 15.2 ± 1.5% vs 21.1 ± 5%, P < .05). CONCLUSIONS: The present data disclose Gremlin-1 as an antagonist of TGF-ß and presume a role for Gremlin-1/TGF-ß interaction in myocardial remodelling following myocardial ischaemia.


Assuntos
Fibroblastos/metabolismo , Coração/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Colágeno Tipo I/metabolismo , Ecocardiografia , Células Endoteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Microscopia Confocal , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteínas Recombinantes , Fator de Crescimento Transformador beta/efeitos dos fármacos , Remodelação Ventricular/genética
18.
J Pathol ; 251(4): 349-352, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472605

RESUMO

Highly conserved, complex and interacting morphogen signalling pathways regulate adult stem cells and control cell fate determination across numerous different organs. In homeostasis, the bone morphogenetic protein (BMP) pathway predominantly promotes cell differentiation. Localised expression of ligand sequestering BMP antagonists, such as Gremlin 1 (Grem1), necessarily restricts BMP activity within the stem cell niche and facilitate stemness and self-renewal. In a new paper, Rowan, Jahns et al show that acute deletion of Grem1 in adult mice, using a ubiquitous ROSA26-Cre recombinase, induced not only severe intestinal enteropathy but also hypocellular bone marrow failure suggestive of stem cell niche collapse in both tissues. Grem1 has an increasingly recognised pleiotrophic role in a number of organ systems and is implicated across a wide range of disease states. Although the importance of Grem1 in intestinal stem cell regulation has been well described, a putative function in haematopoietic niche maintenance is novel and requires further exploration. Moreover, the complex and context-specific regulation of Grem1, among a host of functionally convergent but structurally disparate BMP antagonists, warrants further research as we learn more about the pathogenic consequences of deranged expression of this small, but important, protein. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Proteínas Morfogenéticas Ósseas , Transdução de Sinais , Animais , Diferenciação Celular , Camundongos , Nicho de Células-Tronco
19.
Exp Cell Res ; 390(1): 111941, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145252

RESUMO

BACKGROUND: Endothelial-to-mesenchymal transition (EndMT) has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). Gremlin-1 promotes vascular remodeling of PAH and mediates epithelial-mesenchymal transition, which is similar to EndMT. In the present study we investigated the potential role of gremlin-1 plays in EndMT of pulmonary artery endothelial cells (PAECs). METHODS: Immunofluorescence staining was performed to detect the expression of alpha smooth muscle actin (α-SMA) and von Willebrand factor (VWF). Migration and angiogenic responses of PAECs were determined by transwell assay and tube formation assay, respectively. Protein expression levels were determined by western blotting. RESULTS: Gremlin-1 induced EndMT of PAECs in a phospho-smad2/3-dependent manner. This was characterized by the loss of platelet endothelial cell adhesion molecule 1 and an increase in protein levels of a-SMA, nerve-cadherin, and matrix metalloproteinase 2. It was also determined that gremlin-1 facilitated the migration and angiogenic responses of PAECs in a dose-dependent manner. Bone morphogenetic protein 7 (BMP-7) was found to attenuate gremlin-1-mediated EndMT, migration and angiogenesis of PAECs by inducing phosphorylation of Smad1/5/8 and suppressing phosphorylation of Smad2/3. CONCLUSION: Gremlin-1 mediates EndMT in PAECs, and BMP-7 reverses gremlin-1-induced EndMT by an induction of p-Smad1/5/8 and suppression of p-Smad2/3.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Actinas/genética , Actinas/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Artéria Pulmonar/citologia , Proteínas Smad/genética , Proteínas Smad/metabolismo
20.
Lung ; 199(3): 289-298, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33770226

RESUMO

PURPOSE: The differential diagnosis of interstitial lung diseases (ILDs), particularly idiopathic pulmonary fibrosis (IPF) versus other non-IPF ILDs, is important for selecting the appropriate treatment. This retrospective study aimed to explore the utility of gremlin-1 for the differential diagnosis. METHODS: Serum gremlin-1 concentrations were measured using an ELISA in 50 patients with IPF, 42 patients with non-IPF ILD, and 30 healthy controls. The baseline clinical data, including pulmonary functions, prognosis, and three serum biomarkers (Krebs von den Lungen-6 [KL6], surfactant protein-D [SP-D], and lactate dehydrogenase [LDH]), were obtained through a medical record review for analyzing their associations with serum gremlin-1 concentrations. To evaluate the origin of gremlin-1, we performed immunostaining on lung sections. RESULTS: Serum gremlin-1 concentrations were significantly higher in patients with IPF (mean concentration, 14.4 ng/mL), followed by those with non-IPF ILD (8.8 ng/mL) and healthy controls (1.6 ng/mL). The area under the curve for IPF versus non-IPF ILDs was 0.759 (95% confidence interval, 0.661-0.857), which was superior to that of KL6/SP-D/LDH. The sensitivity and specificity for gremlin-1 (cutoff, 10.4 ng/mL) was 72 and 69%, respectively. By contrast, serum gremlin-1 concentrations were not associated with the pulmonary functions nor the prognosis in all patients with ILDs. In immunostaining, the gremlin-1 was broadly upregulated in IPF lungs, particularly at myofibroblasts, bronchiolar/alveolar epithelium, and CD163-positive M2-like macrophages. CONCLUSIONS: Gremlin-1 may be a useful biomarker to improve the diagnostic accuracy for IPF compared to non-IPF ILDs, suggesting a role of this molecule in the pathogenesis of IPF.


Assuntos
Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/diagnóstico , Peptídeos e Proteínas de Sinalização Intercelular/genética , Doenças Pulmonares Intersticiais/diagnóstico , Pulmão/diagnóstico por imagem , RNA Mensageiro/genética , Idoso , Animais , Biomarcadores/sangue , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/genética , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA