Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(10): 10979-10990, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34334195

RESUMO

The dairy industry has been scrutinized for the environmental impact associated with rearing and maintaining cattle for dairy production. There are 3 possible opportunities to reduce emissions through genetic selection: (1) a direct methane trait, (2) a reduction in replacements, and (3) an increase in productivity. Our aim was to estimate the independent effects of traits in the Australian National Breeding Objective on the gross methane production and methane intensity (EI) of the Australian dairy herd of average genetic potential. Based on similar published research, the traits determined to have an effect on emissions include production, fertility, survival, health, and feed efficiency. The independent effect of each trait on the gross emissions produced per animal due to genetic improvement and change in EI due to genetic improvement (intensity value, IV) were estimated and compared. Based on an average Australian dairy herd, the gross emissions emitted per cow per year were 4,297.86 kg of carbon dioxide equivalents (CO2-eq). The annual product output, expressed in protein equivalents (protein-eq), and EI per cow were 339.39 kg of protein-eq and 12.67 kg of CO2-eq/kg of protein-eq, respectively. Of the traits included in the National Breeding Objective, genetic progress in survival and feed saved were consistently shown to result in a favorable environmental impact. Conversely, production traits had an unfavorable environmental impact when considering gross emissions, and favorable when considering EI. Fertility had minimal impact as its effects were primarily accounted for through survival. Mastitis resistance only affected IV coefficients and to a very limited extent. These coefficients may be used in selection indexes to apply emphasis on traits based on their environmental impact, as well as applied by governments and stakeholders to track trends in industry emissions. Although initiatives are underway to develop breeding values to reduce methane by combining small methane data sets internationally, alternative options to reduce emissions by utilizing selection indexes should be further explored.


Assuntos
Metano , Leite , Animais , Austrália , Bovinos/genética , Indústria de Laticínios , Meio Ambiente , Feminino
2.
Glob Chang Biol ; 26(5): 3006-3014, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32100912

RESUMO

The Global Carbon Project (GCP) has published global carbon budgets annually since 2007 (Canadell et al. [2007], Proc Natl Acad Sci USA, 104, 18866-18870; Raupach et al. [2007], Proc Natl Acad Sci USA, 104, 10288-10293). There are many scientists involved, but the terrestrial fluxes that appear in the budgets are not well understood by ecologists and biogeochemists outside of that community. The purpose of this paper is to make the terrestrial fluxes of carbon in those budgets more accessible to a broader community. The GCP budget is composed of annual perturbations from pre-industrial conditions, driven by addition of carbon to the system from combustion of fossil fuels and by transfers of carbon from land to the atmosphere as a result of land use. The budget includes a term for each of the major fluxes of carbon (fossil fuels, oceans, land) as well as the rate of carbon accumulation in the atmosphere. Land is represented by two terms: one resulting from direct anthropogenic effects (Land Use, Land-Use Change, and Forestry or land management) and one resulting from indirect anthropogenic (e.g., CO2 , climate change) and natural effects. Each of these two net terrestrial fluxes of carbon, in turn, is composed of opposing gross emissions and removals (e.g., deforestation and forest regrowth). Although the GCP budgets have focused on the two net terrestrial fluxes, they have paid little attention to the gross components, which are important for a number of reasons, including understanding the potential for land management to remove CO2 from the atmosphere and understanding the processes responsible for the sink for carbon on land. In contrast to the net fluxes of carbon, which are constrained by the global carbon budget, the gross fluxes are largely unconstrained, suggesting that there is more uncertainty than commonly believed about how terrestrial carbon emissions will respond to future fossil fuel emissions and a changing climate.


Assuntos
Carbono , Ecossistema , Dióxido de Carbono , Conservação dos Recursos Naturais , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA