RESUMO
An attempt has been made to comprehend the ground water quality and climate impacts of the Chennai River basin, which is aimed at its main socio-economic growth of the state of Tamil Nadu. The ground water samples collected from the study area were analyzed for its hydrogeochemical elements. The ground water quality and irrigation suitability were determined using several water quality assessment metrics. Ground water is extensively utilized for irrigation in the entire basin area for the past two decades, especially in the 38 over-exploited Firkas out of the 109 Firkas of the basin. It is inferred that the phreatic aquifer ground water quality is fresh in about 20%, as indicated by the EC value (< 750 µs/cm) at 25 °C. In about 63% of the ground water indicating the moderately fresh showing the EC varies between 751 and 2250 µs/cm at 25 °C, 11% of ground water exerted an EC ranging between 2251 and 3000 µs/cm at 25 °C indicating that the ground water is slightly mineralized, and in about 6% of groundwater, the EC is > 3000 µs/cm at 25 °C indicating that the ground water is highly mineralized. There were no water samples that exceeded the permissible limit of chloride either in phreatic aquifer or in fracture aquifer. The changes in rainfall frequency and atmospheric temperature affect the ground water movement and storage directly and indirectly. Similarly, the temperature data shows a positive relationship with the concentration of fluoride and nitrate ions in the water.
Assuntos
Irrigação Agrícola , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Índia , Água Subterrânea/química , Irrigação Agrícola/métodos , Poluentes Químicos da Água/análise , Rios/química , Nitratos/análise , Abastecimento de ÁguaRESUMO
Contamination of underground water by uranium (U) and other heavy metals is a growing concern. Mesoporous silica nanoparticles (MSNs) have shown great potential as an adsorbent material for heavy metal removal. This study synthesized a novel MSN using surface-initiated atom transfer radical polymerization (SI-ATRP) and evaluated its effectiveness for removing uranium from aqueous solutions under different conditions. The particle size was reduced to 150-240 nm to enhance adsorption. Fourier transform infrared characterization and thermogravimetric analysis confirmed successful synthesis and modification. Results showed that the MSN adsorbent was highly effective in removing U, with a removal rate of 85.35% at 120 min. Temperature had a significant impact, with the highest removal rate of 96.7% achieved at 25 °C and a U concentration of 10 ppm. The highest removal rate of 91.89% was achieved at a pH of 6 and a U concentration of 50 ppm. The highest removal rate of 95.16% was achieved at 25 mg and a U concentration of 50 ppm at room temperature for 60 min. The MSNs also showed a 58.27% removal rate in a mixture solution at room temperature for 60 min. This study demonstrates the effectiveness of the MSN adsorbent for removing U under different conditions.
RESUMO
Exponential industrialization and anthropogenic activities have resulted in water contamination by various heavy metals in Kanpur city, India. Heavy metal pollution, an issue of great concern, is not only affecting river water, but contamination of groundwater is creating health issues and worries. In the present investigation, blood samples were collected from selected volunteers, water and sediment samples from four sites of river Ganga and drinking groundwater samples from 23 locations of Kanpur city. Heavy metals analysis in river water, sediment, and human blood, was done by inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) was used for groundwater samples. Human blood showed a high concentration of arsenic (As) (66.6 ± 0.00 and 76.9 ± 0.01 µg L-1 in males and female subjects, respectively) and thallium (Tl) (13.4 ± 0.004 and 16.6 ± 0.005 µg L-1 in males and female subjects, respectively) with higher concentrations in females than males. Other heavy metals (Nickle, Beryllium, Cadmium, Cobalt, Chromium, Lithium, Molybdenum, Lead) were not observed in any of the tested human blood samples. However, in groundwater sampling, iron (Fe), copper (Cu), and arsenic (As) were detected, one sample had the presence of chromium (Cr), and two samples showed lead (Pb) contamination. River water [Cu (32-125 µg L-1), Cr (19-725 µg L-1), Cd (1-59 µg L-1), Pb (37-163 µg L-1), As (32-153 µg L-1), Th (26.75 µg L-1)] showed a high level of the heavy metals, as compared to reference values of BIS, CPCB (2016a), WHO, EPA and USEPA. River sediment [Cu (4168-34,470 µg Kg-1), Cr (4040-145,650 µg Kg-1), Cd (326-5340 µg Kg-1), Pb (1840-19,350 µg Kg-1), As (103-188 µg Kg-1)] also showed high concentration when compared to reference values of USEPA and PASS. River site 4, with high Cr (725 µg L-1), also showed Cr levels (19.8 µg L-1) in the groundwater samples, indicating Cr contamination in groundwater while Pb was observed at groundwater samples close to two industrial sites. Drinking water might be the primary exposure pathway for As and Tl to enter the human body. The study recommends periodic monitoring of river water, sediment, groundwater, and human blood samples for contamination of heavy metals.
Assuntos
Arsênio , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Humanos , Feminino , Arsênio/análise , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Cromo/análise , Água/análise , Índia , Poluentes Químicos da Água/análise , Medição de RiscoRESUMO
Uranium, naturally occurring radionuclide is chemotoxic and nephrotoxic beyond acceptable limit. The presence of uranium beyond acceptable limit in surface and ground water, adversely affecting people's health. In the present investigation, the uranium concentration in surface and ground water of Chittorgarh, Rajasthan was studied along with the physico-chemical parameters of water (n = 87). The ground water was further sub-categorised into well water, handpump water, and borewell water. The mean uranium concentration was observed at 2.5 ± 1.9 µgL-1 and 16.5 ± 1.4 µgL-1 in the surface and ground water samples, respectively. In sub-categories of ground water, the highest uranium concentration was found in borewell water (23.3 ± 17.0 µgL-1), followed by handpump water (13.5 ± 9.1 µgL-1) and well water (6.0 ± 5.5 µgL-1). The uranium concentration was correlated significantly with the depth of the ground water table. It also correlated significantly with electrical conductivity, total dissolved solids and nitrate concentration. 100% of surface water and 88.9% of ground water samples carried uranium concentration within the acceptable limit of WHO (30 µgL-1). The annual ingestion dose was found at 3.8 µSvy-1 (for males) and 2.8 µSvy-1 (for females) in surface water and 25.4 µSvy-1 (for males) and 18.5 µSvy-1 (for females) in ground water. In the sub-categories of the ground water sample, the annual ingestion dose followed the trend in males 35.8 µSvy-1 (borewell water) > 20.7 µSvy-1 (hand pump water) > 9.2 µSvy-1 (well water) and in females 26.1 µSvy-1 (borewell water) > 15.1 µSvy-1 (hand pump water) > 6.7 µSvy-1 (well water).
Assuntos
Água Subterrânea , Urânio , Humanos , Feminino , Masculino , Índia , Monitoramento Ambiental , Água , Ingestão de AlimentosRESUMO
The present study proposes an integrated simulation-optimization framework to assess environmental flow by mitigating environmental impacts on the surface and ground water resources. The model satisfies water demand using surface water resources (rivers) and ground water resources (wells). The outputs of the ecological simulation blocks of river ecosystem and the ground water level simulation were utilized in a multiobjective optimization model in which six objectives were considered in the optimization model including (1) minimizing losses of water supply (2) minimizing physical fish habitat losses simulated by fuzzy approach (3) minimizing spawning habitat losses (4) minimizing ground water level deterioration simulated by adaptive neuro fuzzy inference system(ANFIS) (5) maximizing macroinvertebrates population simulated by ANFIS (6) minimizing physical macrophytes habitat losses. Based on the results in the case study, ANFIS-based model is robust for simulating key factors such as water quality and macroinvertebrate's population. The results demonstrate the reliability and robustness of the proposed method to balance environmental requirements and water supply. The optimization model increased the percentage of environmental flow in the drought years considerably. It supplies 69% of water demand in normal years, while the environmental impacts on the river ecosystem are minimized. The proposed model balances the portion of using surface water and ground water in water supply considering environmental impacts on both sources. Using the proposed method is recommendable for optimal environmental management of surface water and ground water in river basin scale.
Assuntos
Ecossistema , Rios , Animais , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes , Qualidade da ÁguaRESUMO
Availability of clean drinking water is a basic necessity of human population. Therefore, the current study was taken up for spatial analysis and human health risk assessment of elements in Ground water of District Hyderabad, Pakistan. Evaluation of 10 potential hazardous elements in one hundred eighteen samples of ground water from district Hyderabad, Pakistan was done to assess their natural and anthropogenic origin and possible effects on living organisms and human health. Based on statistical tools of Pearson Co-relation, Metal Clustering and Principal Component Analysis (PCA), three groups of elements were produced; First group included Mn, Fe, B and Cr, the second group contained Cu, Ni and As while third group included Pb, Cd and Zn. Higher Relative Standard Deviation (RSD) values of Cu, Ni, As, Pb, Cd and Zn showed their anthropogenic origin while Mn, Fe, B and Cr were found with lower concentration that indicated their natural origin. Histograms and box-plots of Mn, Fe, B and Cr were found to be normally distributed while these parameters were appeared abnormal for Cu, Ni, As, Pb, Cd and Zn. Risk assessment was quantified by hazard quotient (HQ) and cancer risk for both adult and child. Non-carcinogenic risks as depicted by HQs of all the 10 metal(loid)s were below the recommended HQ threshold of 1 for both child and adult. However, highest HQ was calculated for B (child 0.300 and adult 0.338) followed by the values for Mn and Ni. The potential risks of combined effect of all the 10 metal(loid)s through ingestion of groundwater was assessed using HI and calculated to be 0.694 for adult and 0.566 for child. This indicates the potential health risk of these metal(loid)s to human due to the consumption of the groundwater of district Hyderabad for drinking purpose. Considering the geometric mean for the studied area, carcinogenic risk of As through oral intake was calculated i.e. 1.50 × 10-4 and 2.62 × 10-5 for the adult and child However, this carcinogenic risk is 1.91 × 10-5 and 3.28 × 10-6 for Cd in adult and child and 1.94 × 10-3 and 3.32 × 10-4 for Cr in adult and child, respectively. Since the cancer risk 6exceeded the target risk of 1 × 10-4 for Cr i.e. 1.94 × 10-3 in adult, it can thus be considered as 'non-acceptable'. Spatial maps of elements produced by ArcGIS showed the hotspots of potential hazardous elements such as highest concentration of elements like Zn, Pb and Cd was found in urban areas while highest concentration of Cu, Ni and As was observed near Phulleli canal which passes from Hyderabad City and may contain contamination from waste material of residential area due to their anthropogenic activities.
Assuntos
Água Subterrânea , Metais Pesados , Neoplasias , Adulto , Cádmio/análise , Criança , Monitoramento Ambiental , Humanos , Chumbo/análise , Metais Pesados/análise , Paquistão , Medição de Risco , Análise EspacialRESUMO
We report the trace element status of residents living in areas with naturally sulphide-rich bedrock and soil in two municipalities in Finland, Sotkamo and Kaavi. Altogether, 225 people from these sparsely populated regions participated voluntarily by providing hair and blood samples. The concentrations of calcium, zinc and copper in serum as well as selenium and cadmium in whole blood did not show correlation with those concentrations in hair samples. Calcium concentration in serum was slightly lower in the sulphide-rich areas (median value 91.4 mg/l, n = 103) than in the areas with adjacent sulphur-poor bedrock (median value 93.6 mg/l, n = 82). The concentrations of Ni and Mn in hair correlated with those in drinking water. The highest Mn and Ni concentrations in the water samples from private wells were 1620 µg/l and 51 µg/l and the highest concentrations in human hair samples 36.44 mg/kg and 12.3 mg/kg, respectively. The challenge with elevated trace element concentrations in some well waters is well documented. In northern countries (Finland, Sweden, Norway and Canada), only 10% of the population depend on private well water, and 90% have access to monitored municipal water supplies. Compared with data available from sulphide mine sites globally, the nickel and manganese concentrations in human hair samples were high in our sulphide-rich study area at Sotkamo representing the trace element status of residents under natural conditions.
Assuntos
Água Potável , Selênio , Oligoelementos , Humanos , Níquel/análise , Manganês/análise , Oligoelementos/análise , Cádmio/análise , Cobre/análise , Selênio/análise , Cálcio , Soro/química , Zinco/análise , Cabelo/química , Solo , Sulfetos , EnxofreRESUMO
The characterisation of solid waste (SW), leachate, is essential for developing an appropriate management strategy or treatment method. However, due to a range of contributing factors, such as waste type and dumping site locations, forecasting leachate quality is often challenging. This research article discusses leachate quality indicators and the temporal variations of leachate quality collected throughout various seasons and after 1-2 years of storage. In addition to that, the article also provides the data of different physicochemical parameters of SW and ground water (GW) quality collected from of Pirana solid waste dumping area (Pirana SWD), Ahmedabad, India, and surrounding areas throughout various seasons. The parameters like pH, COD, TDS, sulphates, nitrates, ammonia nitrogen, hardness, and heavy metals were all monitored to see whether there any temporal variations. When leachates were obtained 'fresh,' all parameters evaluated showed significantly higher values. As time passed, the values of the parameters (COD, ammonia nitrogen) stabilised. Heavy metals such as Hg, As, Pb, and Cr were detected in both fresh and old samples. Similarly in SW, the presence of heavy metals Hg (0.39 ppb), Pb (1.12 ppb), and Cr (16.86 ppb) were also detected. In case of GW, some samples also show the high TDS but the presence of metals like Cr, Ni, and Zn is less than permissible limit.
Assuntos
Água Subterrânea , Mercúrio , Metais Pesados , Eliminação de Resíduos , Poluentes Químicos da Água , Amônia , Monitoramento Ambiental , Índia , Chumbo , Metais Pesados/análise , Nitrogênio , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análiseRESUMO
Although widely used in permeation reaction barrier (PRB) for strengthening the removal of various heavy metals, zero-valent iron (ZVI) is limited by various inherent drawbacks, such as easy passivation and poor electron transfer. As a solution, a synergistic system with PRB and electrokinetics (PRB-EK) was established and applied for the efficient removal of Cr(VI)-contaminated groundwater. As the filling material of PRB, ZVI/Fe3O4/activated carbon (ZVI/Fe3O4/AC) composites were synthesized by ball milling and thermal treatment. A series of continuous flow column experiments and batch tests was conducted to evaluate the removal efficiency of Cr(VI). Results showed that the removal efficiency of Cr(VI) remained above 93% even when the bed volume (BV) reached 2000 under the operational parameters (iron/AC mass ratio, 2:1; current, 5 mA). The mechanism of Cr(VI) removal by the PRB-EK system was revealed through field emission scanning electron microscopy images, X-ray diffraction, X-ray photoelectron spectroscopy, Fe2+ concentration, and redox potential (Eh) values. The key in Cr(VI) reduction was the Fe2+/Fe3+ cycle driven by the surface microelectrolysis of the composites. The application of an externally supplied weak direct current maintained the redox process by enhancing the electron transfer capability of the system, thereby prolonging the column lifetime. Cr(VI) chemical speciation was determined through sequential extraction, verifying the stability and safety of the system. These findings provide a scientific basis for PRB design and the in-situ remediation of Cr(VI)-contaminated groundwater.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Cromo/análise , Ferro , Poluentes Químicos da Água/análiseRESUMO
Whether annual evapotranspiration of native ecosystems is increasing or decreasing with time as CO2 concentrations are rising, the climate is warming and rainfall experiences booms and busts, remains an unanswered question in the field of global change biology. To answer this question, we measured evapotranspiration and carbon dioxide exchange over and under an oak savanna and over an annual grassland in the Mediterranean climate of California, USA, from 2001 through 2019 with the eddy covariance method; during this 19-year period, CO2 rose 40 ppm, air temperature increased by 1°C and annual rainfall ranged between 133 and 890 mm/year. No temporal trend in evapotranspiration or water use efficiency was observed over this time duration. Many competing positive and negative feedbacks among stomatal sensitivity to carbon dioxide concentrations, soil moisture, and vapor pressure deficit, the impact of temperature on saturation vapor pressure and access to groundwater muted the response of evapotranspiration to its changing world when integrated to the ecosystem scale and annual time steps. At the intra-annual time scale, we found that plants transmit information on soil moisture status through their influence on the vapor pressure deficit of the atmospheric boundary layer. The inter-annual variations in evaporative water use by the savanna and annual grassland were relatively decoupled from the booms and busts in rainfall. Instead, variations in length of growing season and access to groundwater explained much of this year-to-year variation in annual evapotranspiration. The access of groundwater by the oak savanna may make these ecosystems more robust in a warmer world, than was previously thought. This is a scale emergent property that needs better consideration in coupled climate-ecosystem models.
Assuntos
Ecossistema , Quercus , Dióxido de Carbono , Clima , Pradaria , ÁguaRESUMO
Though not regulated in directives such as the Water Framework Directive of the European Union, the investigation of geogenic background concentrations of certain elements such as precious metals is of increasing interest, in particular for the early detection of a potential environmental pollution due to the increased use in various industrial and technological applications and in medicine. However, the precise and accurate quantification of precious metals in natural waters is challenging due to the complex matrices and the ultra-low concentrations in the (sub-) ng L-1 range. A methodological approach, based on matrix separation and pre-concentration on the strong anion exchange resin TEVA® Resin in an online mode directly coupled to ICP-SFMS, has been developed for the determination of Ag, Pt, Pd and Au in ground water. Membrane desolvation sample introduction was used to reduce oxide-based spectral interferences, which complicate the quantification of these metals with high accuracy. To overcome errors arising from matrix effects-in particular, the highly varying major ion composition of the investigated ground water samples-an isotope dilution analysis and quantification based on standard additions, respectively, were performed. The method allowed to process four samples per hour in a fully automated mode. With a sample volume of only 8 mL, enrichment factors of 6-9 could be achieved, yielding detection limits <1 ng L-1. Validation of the trueness was performed based on the reference samples. This method has been used for the analysis of the total concentrations of Ag, Pt, Pd and Au in highly mineralized ground waters collected from springs located in important geological fault zones of Austria's territory. Concentrations ranges of 0.21-64.2 ng L-1 for Ag, 0.65-6.26 ng L-1 for Pd, 0.07-1.55 ng L-1 for Pt and 0.26-1.95 ng L-1 for Au were found.
RESUMO
The objectives of this study were to evaluate the physicochemical properties of drinking water sources at Ihiala, Nigeria, and to assess the water quality using the heavy metal pollution index, heavy metal evaluation index and contamination index models. Physicochemical parameters like pH, total hardness, total dissolved solids, nitrate, cyanide, residual chlorine and six metals (Al, Cd, Cr, Cu, Pb and Ni) were analyzed in the water samples, and heavy metal pollution indices computed. The spring and borehole waters had better organoleptic properties compared to stream, river and sachet waters. Total hardness, pH and nitrate were the major nonmetallic contributors to the poor water quality. The mean pollution indices were: heavy metal pollution index (HPI) 143.02 ± 71.16, heavy metal evaluation index (HEI) 7.53 ± 4.12 and contamination index (Cd) 1.53 ± 4.12. Sixty percent of the samples exceeded the critical HPI value of 100. There was significant (P < 0.01) positive correlation between HPI and Cd, HPI and HEI (r = 0.886) and HEI and Cd (r = 1.000). Lead contributed most to heavy metal pollution of water in the region. The quality of most water sources in Ihiala is not good for drinking.
Assuntos
Água Potável/normas , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Cloro/análise , Água Potável/análise , Metais Pesados/análise , Nigéria , Nitratos/análise , Medição de RiscoRESUMO
Herbicide use, mainly glyphosate, has been intense in worldwide agriculture, including in the Brazilian Amazon region. This study aimed to validate a method for determining glyphosate and its degradation product, AMPA, and glufosinate by HPLC-FL in 58 water samples collected at the Santarém plateau region (Planalto Santareno), in the western of Pará state, Brazil. The method involves filtration and direct injection in the HPLC-FL for AMPA analysis, or previous concentration (10×) by lyophilization for glufosinate and glyphosate analysis. Analytes were oxidized and complexed with o-phthalaldehyde and 2-mercaptoethanol in a post-column reaction before fluorescence detection. LOQs for AMPA, glyphosate and glufosinate were established at 0.5, 0.2 and 0.3 µg L-1, respectively. A total of 58 samples were collected. Glyphosate and glufosinate were not detected in any of the 30 surface water samples collected in 2015 (Assuntos
Aminobutiratos/análise
, Cromatografia Líquida de Alta Pressão/métodos
, Glicina/análogos & derivados
, Poluentes Químicos da Água/análise
, Água/química
, Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise
, Brasil
, Monitoramento Ambiental
, Fluorescência
, Liofilização
, Glicina/análise
, Herbicidas/análise
, Limite de Detecção
, Reprodutibilidade dos Testes
, Glifosato
RESUMO
In coastal areas of Bangladesh, the problem of getting fresh drinking water is acute since the surface and groundwater of this area are affected by both seawater intrusion and anthropogenic activities. This study aims at assessing the hydrochemistry and quality of surface and groundwater of a south-western coastal area Rupsha Upazila of Bangladesh using geographical information system (GIS) technique. The hydrochemical facies revealed that the surface waters are mainly characterized by Na-Ca-HCO3-Cl and the groundwaters are characterized by Na-Cl-HCO3, indicating mixing composition of the natural water, while the Gibbs diagram indicates mixing processes of both the rock-water and evaporation-crystallization interactions of the surface and groundwater. The comparisons of the water quality parameters with World Health Organization (WHO) and Bangladesh (BD) standards show that surface water quality is better than groundwater in terms of total dissolved solids, chloride, iron, and arsenic concentrations. In surface water, arsenic concentration is within the WHO and BD standard but 40% of the groundwater samples exceeded the standard. Results also showed that 100% of the surface water samples exceeded the Escherichia coli and 62.85% of the groundwater samples exceeded the standard limit. Thus, the surface water of the study area can be a potential source to meet the future challenges for drinking water shortage problems as compared to aquifer water of the area.
Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Bangladesh , Qualidade da ÁguaRESUMO
Containing high concentration of vanadium served by the volcanic bedrock, Jeju ground water has long been known for various implicit health benefits including immune-promotion. Exposure to stress has been reported to be associated with immunosuppression such as reducing lymphocyte population or antibody production due to stress hormones. In this study, we aimed at evaluating the effects of Jeju ground water on chronically stressed mice. C57BL/6 mice were subjected to various stressors such as restraint stress, water swimming stress, heat stress, acoustic stress, and Jeju ground water was supplied for 28 days with two different concentrations, S1 (vanadium 15-20 µg/l, pH 8.3) and S2 (vanadium 20-25 µg/l, pH 8.5). Treatment with Jeju ground water increased CD4+CD8- or CD4-CD8+ single-positive thymocytes. It also increased the proliferation of splenocytes and the populations of CD4+ T cells, CD45R/B220+ B cells, CD11b+ macrophages or Gr-1+ granulocytes in spleen. In addition, the production of IgG was increased in chronically stressed mice by treatment with Jeju ground water. These results suggest vanadium-rich Jeju ground water may be helpful in T cell development in thymus and immune cell proliferation and its function in spleen against chronic stress.
Assuntos
Linfócitos T/efeitos dos fármacos , Timócitos/efeitos dos fármacos , Vanádio/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Água Subterrânea/química , Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Estresse Fisiológico/fisiologia , Timo/imunologia , Vanádio/fisiologiaRESUMO
This paper presents an electrochemical sensor for Cr(VI) (chromate ion) in water. A disposable screen-printed electrode was modified with gold nanostars (AuNSs) that were synthesized by Good's buffer method. Linear sweep voltammetry (LSV) was employed for the detection of Cr(VI) in 0.1 M sulfuric acid solution. The AuNSs are shown to provide higher current response to Cr(VI) than spherically shaped gold nanoparticles. The sensor gives the strongest response at a scan rate of 0.05 V (vs Ag/AgCl) and exhibits minimal interference from other electroactive species. The linear range extends from 10 to 75,000 ppb, and the limit of detection is 3.5 ppb. This is well below the provisional guideline value given by the World Health Organization. Excellent recoveries (ranging between 95 and 97%) were found when analyzing contaminated ground water samples obtained from a site situated in Wellesley, MA. Graphical abstract Schematic presentation of preparation of gold nanostars (AuNS) on carbon paste screen printed electrode (CPSPE) by drop casting and electrochemical detection of chromium (VI) using linear sweep voltammetry (LSV).
RESUMO
The online measurement of ground water quality, as one important area of water resource protection, can provide real-time measured water quality parameters and send out warning information in a timely manner when the water resource is polluted. Based on ultraviolet (UV) spectrophotometry, a remote online measurement method is proposed and used to measure the ground water quality parameters chemical oxygen demand (COD), total organic carbon (TOC), nitrate nitrogen (NO3-N), and turbidity (TURB). The principle of UV spectrophotometry and the data processing method are discussed in detail, the correlated mathematical modeling of COD and TOC is given, and a confirmatory experiment is carried out. Turbidity-compensated mathematical modeling is proposed to improve the COD measurement accuracy and a confirmatory experiment is finished with turbidity that ranges from 0 to 100 NTU (Nephelometric Turbidity Unit). The development of a measurement instrument to detect the ground water COD, TOC, NO3-N, and TURB is accomplished; the test experiments are completed according to the standard specification of China's technical requirement for water quality online automatic monitoring of UV, and the absolute measuring errors of COD, TOC, and NO3-N are smaller than 5.0%, while that of TURB is smaller than 5.4%, which meets the requirements for the online measurement of ground water quality.
RESUMO
The concentrations of difluoroacetic acid (DFA) and trifluoroacetic acid (TFA) in rainwater and surface water from Berlin, Germany resembled those reported for similar urban areas, and the TFA/DFA ratio in rainwater of 10:1 was in accordance with the literature. In contrast, nearby ground water historically contaminated with 1,1,2-trichloro-1,2,2-trifluoroethane (R113) displayed a TFA/DFA ratio of 1:3. This observation is discussed versus the inventory of microbial degradation products present in this ground water along with the parent R113 itself. A microbial transformation of chlorotrifluoroethylene (R1113) to DFA so far has not been reported for environmental media, and is suggested based on well-established mammalian metabolic pathways.
Assuntos
Clorofluorcarbonetos/análise , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Monitoramento Ambiental , Fluoracetatos/análise , Alemanha , Ácido Trifluoracético/análise , Reforma UrbanaRESUMO
Psychiatric pharmaceuticals are gaining public attention because of increasing reports of their occurrence in environment and their potential impact on ecosystems and human health. This work studied the occurrence and fate of 15 selected psychiatric pharmaceuticals from 3 psychiatric hospitals effluent in Shanghai and investigated the effect of hospitals effluent on surface water, groundwater, soil and plant. Amitriptyline (83.57ng) and lorazepam (22.26ng) showed the highest concentration and were found frequently in hospital effluent. Lorazepam (8.27ng), carbamazepine (83.80ng) and diazepam (79.33ng) showed higher values in surface water. The concentration of lorazepam (46.83ng) in groundwater was higher than other reports. Only six target compounds were detected in all three soil points in accordance with very low concentration. Alkaline pharmaceuticals were more easily adsorbed by soil. Carbamazepine (1.29ng) and lorazepam (2.95ngg-1) were frequently determined in plant tissues. The correlation analyses (Spearman correlations > 0.5) showed the main source of psychiatric pharmaceuticals pollutants might be hospital effluents (from effluent to surface water; from surface water to groundwater). However, hospital effluents were not the only pollution sources from the perspective of the dilution factor analysis. Although the risk assessment indicated that the risk was low to aquatic organism, the continuous discharge of pollution might cause potential environment problem.
Assuntos
Monitoramento Ambiental/métodos , Hospitais Psiquiátricos , Psicotrópicos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Purificação da Água , Organismos Aquáticos/efeitos dos fármacos , China , Água Doce/química , Água Subterrânea/química , Humanos , Psicotrópicos/toxicidade , Medição de Risco , Solo/química , Poluentes do Solo/toxicidade , Águas Residuárias/análise , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidadeRESUMO
The main aim of this study was to remove nitrogen compounds from reclaimed water and reuse the water in semi-arid riverine lake systems. In order to assess the nitrogen removal efficiencies in different natural environments, laboratory scale column experiments were performed using sterilized soil (SS), silty clay (SC), soil with submerged plant (SSP) and biochar amendment soil (BCS). The initial concentration of NO3--N and the flow rate was maintained constant at 15â¯mgâ¯L-1 and 0.6⯱â¯0.1â¯mâ¯d-1, respectively. Among the tested columns, both SSP and BCS were able to achieve NO3--N levels <0.2â¯mgâ¯L-1 in the treated reclaimed water. The results from bacterial community structure analysis, using 454 pyrosequencing of 16s rRNA genes, showed that the dominant denitrifier was Bacillus at the genera level.