Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780064

RESUMO

Tea green leafhoppers are insects widely distributed in major tea-growing areas. At present, less attention has been paid to the study on effect of tea green leafhopper infestation on tea growth phenotype. In this study, tea green leafhoppers were used to treat tea branches in laboratory and co-treated with brassinolide (BL), the highest bioactivity of brassinosteroids (BRs), in tea garden. The results showed that the expression of genes related to BRs synthesis was inhibited and BL content was reduced in tea shoots after infestation by tea green leafhoppers. In addition, area of each leaf position, length and diameter of internodes, and the biomass of the tender shoots of tea plant were decreased after infestation by tea green leafhoppers. The number of trichomes, leaf thickness, palisade tissue thickness and cuticle thickness of tea shoots were increased after tea green leafhoppers infestation. BL spraying could partially recover the phenotypic changes of tea branches caused by tea green leafhoppers infestation. Further studies showed that tea green leafhoppers infestation may regulate the expression of CsDWF4 (a key gene for BL synthesis) through transcription factors CsFP1 and CsTCP1a, which finally affect the BL content. Moreover, BL was applied to inhibit the tea green leafhoppers infestation on tea shoots. In conclusion, our study revealed the effect of plant hormone BL-mediated tea green leafhoppers infestation on the growth phenotype of tea plants.

2.
Phytopathology ; 111(8): 1301-1312, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33369478

RESUMO

Previous research has shown that penicillin-binding proteins (PBPs), enzymes involved in peptidoglycan (PG) assembly, could play an important role during the induction of the viable but nonculturable (VBNC) state, which allows non-spore-forming bacteria to survive adverse environmental conditions. The current study found that Clavibacter michiganensis has seven PBPs. Mutant analysis indicated that deletion of either of the class B PBPs was lethal and that the class A PBPs had an important role in PG synthesis, with the ΔpbpC mutant having an altered cellular morphology that resulted in longer cells that were swollen at one end and had thinner cell walls. The ΔpbpC mutant was also found to produce mucoid colonies in solid culture and a lower final cell titer in liquid medium, as well as having high sensitivity to osmotic stress and lysozyme treatment and surprisingly high pathogenicity. The double mutant, ΔdacB/ΔpbpE, also had a slightly altered phenotype, resulting in longer cells. Further analysis revealed that both mutants had high sensitivity to copper, which resulted in quicker induction into the VBNC state. However, only the ΔpbpC mutant had significantly reduced survivorship in the VBNC state. The study also confirmed that the VBNC state significantly improved the survivorship of wild-type C. michiganensis cells in response to environmental stresses and systemically demonstrated the protective role of the VBNC state in C. michiganensis, which is an important finding regarding its epidemiology and has serious implications for disease management.


Assuntos
Clavibacter , Doenças das Plantas , Viabilidade Microbiana , Proteínas de Ligação às Penicilinas , Peptidoglicano , Virulência
3.
Front Genet ; 15: 1341555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742167

RESUMO

Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production. While hybrid catfish have significant growth advantages in earthen ponds, channel catfish were reported to grow faster in tank culture environments. In this study, we confirmed channel fish's superiority in growth over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this study, respectively; p < 0.001). In addition, we conducted RNA sequencing experiments and established transcriptomic resources for the heart, liver, intestine, mucus, and muscle of both species. The number of expressed genes varied across tissues, ranging from 5,036 in the muscle to over 20,000 in the mucus. Gene Ontology analysis has revealed the functional specificity of differentially expressed genes within their respective tissues, with significant pathway enrichment in metabolic pathways, immune activity, and stress responses. Noteworthy tissue-specific marker genes, including lrrc10, fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This transcriptome resource is poised to support future investigations into the molecular mechanisms underlying environment-dependent heterosis and advance genetic breeding efforts of hybrid catfish.

4.
Elife ; 92020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32401195

RESUMO

Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths each year. Current assays of antimicrobial resistance need knowledge of mutations that confer drug resistance, or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. ODELAM enables rapid quantitative measures of growth kinetics in as little as 30 hrs under a wide variety of environmental conditions. We demonstrate ODELAM's utility by identifying ofloxacin resistance in cultured clinical isolates of Mtb and benchmark its performance with standard minimum inhibitory concentration (MIC) assays. ODELAM identified ofloxacin heteroresistance and the presence of drug resistant colony forming units (CFUs) at 1 per 1000 CFUs in as little as 48 hrs. ODELAM is a powerful new tool that can rapidly evaluate Mtb drug resistance in a laboratory setting.


Assuntos
Antibióticos Antituberculose/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Microscopia de Vídeo , Mycobacterium tuberculosis/efeitos dos fármacos , Ofloxacino/farmacologia , Imagem com Lapso de Tempo , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Cinética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Fluxo de Trabalho
5.
Metab Eng Commun ; 11: e00141, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32874915

RESUMO

Bacillus subtilis is a model Gram-positive bacterium, which has been widely used as industrially important chassis in synthetic biology and metabolic engineering. Rapid growth of chassis is beneficial for shortening the fermentation period and enhancing production of target product. However, engineered B. subtilis with faster growth phenotype is lacking. Here, fast-growing B. subtilis were constructed through rational gene knockout and adaptive laboratory evolution using wild type strain B. subtilis 168 (BS168) as starting strain. Specifically, strains BS01, BS02, and BS03 were obtained through gene knockout of oppD, hag, and flgD genes, respectively, resulting 15.37%, 24.18% and 36.46% increases of specific growth rate compared with BS168. Next, strains A28 and A40 were obtained through adaptive laboratory evolution, whose specific growth rates increased by 39.88% and 43.53% compared to BS168, respectively. Then these two methods were combined via deleting oppD, hag, and flgD genes respectively on the basis of evolved strain A40, yielding strain A4003 with further 7.76% increase of specific growth rate, reaching 0.75 h-1 in chemical defined M9 medium. Finally, bioproduction efficiency of intracellular product (ribonucleic acid, RNA), extracellular product (acetoin), and recombinant proteins (green fluorescent protein (GFP) and ovalbumin) by fast-growing strain A4003 was tested. And the production of RNA, acetoin, GFP, and ovalbumin increased 38.09%, 5.40%, 9.47% and 19.79% using fast-growing strain A4003 as chassis compared with BS168, respectively. The developed fast-growing B. subtilis strains and strategies used for developing these strains should be useful for improving bioproduction efficiency and constructing other industrially important bacterium with faster growth phenotype.

6.
Front Microbiol ; 10: 3019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038518

RESUMO

Mycobacteria have been classified into rapid and slow growing phenotypes, but the genetic factors that underlie these growth rate differences are not well understood. We compared the genomes of 157 mycobacterial species, representing all major branches of the mycobacterial phylogenetic tree to identify genes and operons enriched among rapid and slow growing mycobacteria. Overlaying growth phenotype on a phylogenetic tree based on 304 core genes suggested that ancestral mycobacteria had a rapid growth phenotype with a single major evolutionary separation into rapid and slow growing sub-genera. We identified 293 genes enriched among rapid growing sub-genera, including genes encoding for amino acid transport/metabolism (e.g., livFGMH operon) and transcription, as well as novel ABC transporters. Loss of the livFGMH and ABC transporter operons among slow growing species suggests that reduced cellular amino acid transport may be growth limiting. Comparative genomic analysis suggests that horizontal gene transfer, from non-mycobacterial genera, may have contributed to niche adaptation and pathogenicity, especially among slow growing species. Interestingly, the mammalian cell entry (mce) operon was found to be ubiquitous, irrespective of growth phenotype or pathogenicity, although protein sequence homology between rapid and slow growing species was low (<50%). This suggests that the mce operon was present in ancestral rapid growing species, but later adapted by slow growing species for use as a mechanism to establish an intra-cellular lifestyle.

7.
Int J Biol Sci ; 12(8): 931-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27489497

RESUMO

The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca(2+)-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Verticillium/metabolismo , Arabidopsis/genética , Botrytis/patogenicidade , Resistência à Doença/genética , Resistência à Doença/fisiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Pseudomonas syringae/patogenicidade , Verticillium/genética
8.
Biotechnol J ; 10(11): 1783-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26110969

RESUMO

Current existing assay systems for evaluating antimicrobial activity suffer from several limitations including excess reagent consumption and inaccurate concentration gradient preparation. Recently, microfluidic systems have been developed to provide miniaturized platforms for antimicrobial susceptibility assays. However, some of current microfluidic based assays require continuous flows of reagents or elaborate preparation steps during concentration preparation. In this study, we introduce a novel microfluidic chip based growth phenotype assay that automatically generates a logarithmic concentration gradient and allows observing the growth of pathogenic bacteria under different concentrations of antibiotics in nanoliter batch culture reactors. We chose pathogen bacterium Pseudomonas aeruginosa as a model strain and evaluated the inhibitory effects of gentamicin and ciprofloxacin. We determined the EC50 values and confirmed the validity of the present system by comparing the EC50 values obtained through conventional test tube method. We demonstrated that the EC50 values acquired from present assay are comparable to those obtained from conventional test tube cultures. The potential application of present assay system for investigating combinatorial effects of antibiotics on multidrug resistant pathogenic bacteria is discussed and it can be further used for systematic evaluation of antifungal or antiviral agents.


Assuntos
Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/instrumentação , Testes de Sensibilidade Microbiana/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Mycobiology ; 36(1): 34-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23997605

RESUMO

Schizophyllum commune is an edible and medicinal mushroom widely distributed in the world. The optimal growth conditions for the mycelia of 10 strains of the fungus were investigated. The temperature suitable for the mycelial growth and density was obtained at 30~35℃. Among the tested conditions, the minimum mycelial growth was found at 15℃. In case of pH, the most favorable growth was found at pH 5. The results indicated that this mushroom well adapted to high temperature and low pH for its mycelial growth. Considering growth phenotype of mycelia, Hamada, Hennerberg, PDA and YM were the most suitable and Lilly, Glucose triptone, Glucose peptone and Hoppkins were the most unfavorable among tested media for the mycelial growth of S. commune. Out of tested carbon sources, dextrin and fructose were the most suitable and lactose, mannose and sorbitol were the unsuitable for the fungus. Compact mycelial density was obtained from most of the carbon sources. Among used nitrogen sources, calcium nitrate, potassium nitrate and alanine were the most appropriate and the most incompatible were ammonium phosphate, histidine, urea and arginine for mycelial growth of S. commune on the culture media. Calcium nitrate, histidine and potassium nitrate showed moderately thin or thin, and rest of nitrogen sources showed compact or moderately compact mycelial density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA