Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 68(11): 2885-2897, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28531314

RESUMO

To date, guard cell promoters have been examined in only a few species, primarily annual dicots. A partial segment of the potato (Solanum tuberosum) KST1 promoter (KST1 partial promoter, KST1ppro) has previously been shown to confer guard cell expression in potato, tomato (Solanum lycopersicum), citrus [Troyer citrange (C. sinensis×Poncirus trifoliata)], and Arabidopsis (Arabidopsis thaliana). Here, we describe an extensive analysis of the expression pattern of KST1ppro in eight (previously reported, as well as new) species from five different angiosperm families, including the Solanaceae and the Cucurbitaceae, Arabidopsis, the monocot barley (Hordeum vulgare), and two perennial species: grapevine (Vitis vinifera) and citrus. Using confocal imaging and three-dimensional movies, we demonstrate that KST1ppro drives guard cell expression in all of these species, making it the first dicot-originated guard cell promoter shown to be active in a monocot and the first promoter reported to confer guard cell expression in barley and cucumber (Cucumis sativus). The results presented here indicate that KST1ppro can be used to drive constitutive guard cell expression in monocots and dicots and in both annual and perennial plants. In addition, we show that the KST1ppro is active in guard cells shortly after the symmetric division of the guard mother cell and generates stable expression in mature guard cells. This allows us to follow the spatial and temporal distribution of stomata in cotyledons and true leaves.


Assuntos
Células Vegetais/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Canais de Potássio/genética , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Clonagem Molecular/métodos , Expressão Gênica , Folhas de Planta/citologia , Folhas de Planta/metabolismo
2.
J Exp Bot ; 64(11): 3361-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23828545

RESUMO

Plants have evolved different strategies to resist drought, of which the best understood is the abscisic acid (ABA)-induced closure of stomatal pores to reduce water loss by transpiration. The availability of useful promoters that allow for precise spatial and temporal control of gene expression in stomata is essential both for investigating stomatal regulation in model systems and for biotechnological applications in field crops. Previous work indicated that the regulatory region of the transcription factor AtMYB60 specifically drives gene expression in guard cells of Arabidopsis, although its activity is rapidly down-regulated by ABA. Here, the activity of the full-length and minimal AtMYB60 promoters is reported in rice (Oryza sativa), tobacco (Nicotiana tabacum), and tomato (Solanum lycopersicum), using a reporter gene approach. In rice, the activity of both promoters was completely abolished, whereas it was spatially restricted to guard cells in tobacco and tomato. To overcome the negative effect of ABA on the AtMYB60 promoter, a chimeric inducible system was developed, which combined the cellular specificity of the AtMYB60 minimal promoter with the positive responsiveness to dehydration and ABA of the rd29A promoter. Remarkably, the synthetic module specifically up-regulated gene expression in guard cells of Arabidopsis, tobacco, and tomato in response to dehydration or ABA. The comparative analysis of different native and synthetic regulatory modules derived from the AtMYB60 promoter offers new insights into the functional conservation of the cis-mechanisms that mediate gene expression in guard cells in distantly related dicotyledonous species and provides novel tools for modulating stomatal activity in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA