Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Mol Cell Cardiol ; 189: 52-65, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346641

RESUMO

Adipocytes normally accumulate in the epicardial and pericardial layers around the human heart, but their infiltration into the myocardium can be proarrhythmic. METHODS AND RESULTS: Human adipose derived stem/stromal cells and human induced pluripotent stem cells (hiPSC) were differentiated, respectively into predominantly white fat-like adipocytes (hAdip) and ventricular cardiomyocytes (CMs). Adipocytes cultured in CM maintenance medium (CM medium) maintained their morphology, continued to express adipogenic markers, and retained clusters of intracellular lipid droplets. In contrast, hiPSC-CMs cultivated in adipogenic growth medium displayed abnormal cell morphologies and more clustering across the monolayer. Pre-plated hiPSC-CMs co-cultured in direct contact with hAdips in CM medium displayed prolonged action potential durations, increased triangulation, slowed conduction velocity, increased conduction velocity heterogeneity, and prolonged calcium transients. When hAdip-conditioned medium was added to monolayer cultures of hiPSC-CMs, results similar to those recorded with direct co-cultures were observed. Both co-culture and conditioned medium experiments resulted in increases in transcript abundance of SCN10A, CACNA1C, SLC8A1, and RYR2, with a decrease in KCNJ2. Human adipokine immunoblots revealed the presence of cytokines that were elevated in adipocyte-conditioned medium, including MCP-1, IL-6, IL-8 and CFD that could induce electrophysiological changes in cultured hiPSC-CMs. CONCLUSIONS: Co-culture of hiPSC-CMs with hAdips reveals a potentially pathogenic role of infiltrating human adipocytes on myocardial tissue. In the absence of structural changes, hAdip paracrine release alone is sufficient to cause CM electrophysiological dysfunction mirroring the co-culture conditions. These effects, mediated largely by paracrine mechanisms, could promote arrhythmias in the heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Diferenciação Celular/fisiologia , Adipócitos , Potenciais de Ação
2.
J Cell Physiol ; 238(6): 1368-1380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021796

RESUMO

Human mesenchymal stem cells (hMSCs) are the cornerstone of regenerative medicine; large quantities of hMSCs are required via in vitro expansion to meet therapeutic purposes. However, hMSCs quickly lose their osteogenic differentiation potential during in vitro expansion, which is a major roadblock to their clinical applications. In this study, we found that the osteogenic differentiation potential of human bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), and adipose stem cells (hASCs) was severely impaired after in vitro expansion. To clarify the molecular mechanism underlying this in vitro expansion-related loss of osteogenic capacity in hMSCs, the transcriptome changes following in vitro expansion of these hMSCs were compared. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) was identified as the most downregulated gene shared by late passage hBMSCs, hDPSCs, and hASCs. Both the secreted and non-secreted CRISPLD2 proteins progressively declined in hMSCs during in vitro expansion when the cells gradually lost their osteogenic potential. We thus hypothesized that the expression of CRISPLD2 is critical for hMSCs to maintain their osteogenic differentiation potential during in vitro expansion. Our studies showed that the knockdown of CRISPLD2 in early passage hBMSCs inhibited the cells' osteogenic differentiation in a siRNA dose-dependent manner. Transcriptome analysis and immunoblotting indicated that the CRISPLD2 knockdown-induced osteogenesis suppression might be attributed to the downregulation of matrix metallopeptidase 1 (MMP1) and forkhead box Q1 (FOXQ1). Furthermore, adeno-associated virus (AAV)-mediated CRISPLD2 overexpression could somewhat rescue the impaired osteogenic differentiation of hBMSCs during in vitro expansion. These results revealed that the downregulation of CRISPLD2 contributes to the impaired osteogenic differentiation of hMSCs during in vitro expansion. Our findings shed light on understanding the loss of osteogenic differentiation in hMSCs and provide a potential therapeutic target gene for bone-related diseases.


Assuntos
Doenças Ósseas , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/genética , RNA Interferente Pequeno/metabolismo , Doenças Ósseas/metabolismo , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Fatores Reguladores de Interferon/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430775

RESUMO

Bone responses to pulsed electromagnetic fields (PEMFs) have been extensively studied by using devices that expose bone cells to PEMFs to stimulate extracellular matrix (ECM) synthesis for bone and cartilage repair. The aim of this work was to highlight in which bone healing phase PEMFs exert their action. Specifically, we evaluated the effects of PEMFs both on human adipose mesenchymal stem cells (hASCs) and on primary human osteoblasts (hOBs) by testing gene and protein expression of early bone markers (on hASCs) and the synthesis of late bone-specific proteins (on hOBs) as markers of bone remodeling. Our results indicate that PEMFs seem to exert their action on bone formation, acting on osteogenic precursors (hASCs) and inducing the commitment towards the differentiation pathways, unlike mature and terminally differentiated cells (hOBs), which are known to resist homeostasis perturbation more and seem to be much less responsive than mesenchymal stem cells. Understanding the role of PEMFs on bone regenerative processes provides important details for their clinical application.


Assuntos
Campos Eletromagnéticos , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo
4.
Ceram Int ; 47(3): 2917-2948, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32994658

RESUMO

Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.

5.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638889

RESUMO

The response to DNA damage is the mechanism that allows the interaction between stress signals, inflammatory secretions, DNA repair, and maintenance of cell and tissue homeostasis. Adipocyte dysfunction is the cellular trigger for various disease states such as insulin resistance, diabetes, and obesity, among many others. Previously, our group demonstrated that adipogenesis per se, from mesenchymal/stromal stem cells derived from human adipose tissue (hASCs), involves an accumulation of DNA damage and a gradual loss of the repair capacity of oxidative DNA damage. Therefore, our objective was to identify whether healthy adipocytes differentiated for the first time from hASCs, when receiving inflammatory signals induced with TNFα, were able to persistently activate the DNA Damage Response and thus trigger adipocyte dysfunction. We found that TNFα at similar levels circulating in obese humans induce a sustained response to DNA damage response as part of the Senescence-Associated Secretory Phenotype. This mechanism shows the impact of inflammatory environment early affect adipocyte function, independently of aging.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Dano ao DNA , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa/métodos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
6.
J Cell Mol Med ; 24(21): 12513-12524, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32996692

RESUMO

Osteoporosis (OP) is defined by bone mass loss and structural bone deterioration. Currently, there are no effective therapies for OP treatment. Circular RNAs (circRNAs) have been reported to have an important function in stem cell osteogenesis and to be associated with OP. Most circRNA roles in OP remain unclear. In the present study, we employed circRNA microarray to investigate circRNA expression patterns in OP and non-OP patient bone tissues. The circRNA-miRNA-mRNA interaction was predicted using bioinformatic analysis and confirmed by RNA FISH, RIP and dual-luciferase reporter assays. ARS and ALP staining was used to detect the degree of osteogenic differentiation in human adipose-derived mesenchymal stem cells (hASCs) in vitro. In vivo osteogenesis in hASCs encapsulated in collagen-based hydrogels was tested with heterotopic bone formation assay in nude mice. Our research found that circFOXP1 was significantly down-regulated in OP patient bone tissues and functioned like a miRNA sponge targeting miR-33a-5p to increase FOXP1 expression. In vivo and in vitro analyses showed that circFOXP1 enhances hASC osteogenesis by sponging miR-33a-5p. Conversely, miR-33a-5p inhibits osteogenesis by targeting FOXP1 3'-UTR and down-regulating FOXP1 expression. These results determined that circFOXP1 binding to miR-33a-5p promotes hASC osteogenic differentiation by targeting FOXP1. Therefore, circFOXP7ay prevent OP and can be used as a candidate OP therapeutic target.


Assuntos
Regeneração Óssea/genética , Diferenciação Celular/genética , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , RNA Circular/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Osteoporose/patologia , Osteoporose/fisiopatologia , RNA Circular/genética , Transdução de Sinais
7.
J Cell Physiol ; 234(11): 20520-20532, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31016754

RESUMO

Fracture repair is characterized by cytokine production and hypoxia. To better predict cytokine modulation of mesenchymal stem cell (MSC)-aided bone healing, we investigated whether interleukin 4 (IL-4), IL-6, and their combination, affect osteogenic differentiation, vascular endothelial growth factor (VEGF) production, and/or mammalian target of rapamycin complex 1 (mTORC1) activation by MSCs under normoxia or hypoxia. Human adipose stem cells (hASCs) were cultured with IL-4, IL-6, or their combination for 3 days under normoxia (20% O 2 ) or hypoxia (1% O 2 ), followed by 11 days without cytokines under normoxia or hypoxia. Hypoxia did not alter IL-4 or IL-6-modulated gene or protein expression by hASCs. IL-4 alone decreased runt-related transcription factor 2 (RUNX2) and collagen type 1 (COL1) gene expression, alkaline phosphatase (ALP) activity, and VEGF protein production by hASCs under normoxia and hypoxia, and decreased mineralization of hASCs under hypoxia. In contrast, IL-6 increased mineralization of hASCs under normoxia, and enhanced RUNX2 gene expression under normoxia and hypoxia. Neither IL-4 nor IL-6 affected phosphorylation of the mTORC1 effector protein P70S6K. IL-4 combined with IL-6 diminished the inhibitory effect of IL-4 on ALP activity, bone nodule formation, and VEGF production, and decreased RUNX2 and COL1 expression, similar to IL-4 alone, under normoxia and hypoxia. In conclusion, IL-4 alone, but not in combination with IL-6, inhibits osteogenic differentiation and angiogenic stimulation potential of hASCs under normoxia and hypoxia, likely through pathways other than mTORC1. These results indicate that cytokines may differentially affect bone healing and regeneration when applied in isolation or in combination.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Adulto , Desenvolvimento Ósseo/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Osteogênese/fisiologia , Oxigênio , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Cell Biol Int ; 43(5): 476-485, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30761668

RESUMO

There are numerous studies which provide support for the use of human adipose tissue-derived stem cells (hASCs) to generate hepatocyte-like cells. However, the produced cells exhibit only a certain level of differentiation, mainly due to inefficient induction conditions. Therefore, based on the important role of insulin-like growth factor (IGF-I) in hepatic function and development, in the current study we evaluated the differentiation efficacy of the mentioned factor to induce hASCs into functional hepatocyte-like cells. To investigate this, using a two-step protocol, hASCs were treated with a combination of HGF, Dex, and OSM in the presence or absence of IGF-I up to 21 days. Hepatic differentiation was evaluated by analyzing specific hepatocyte markers at different time points of differentiation induction. Increased expression of hepatocyte-specific genes including ALB, AFP, CK18, and HNF4a, downregulation of bile duct cells marker (CK19), the higher number of ALB positive cells, increased urea production together with higher glycogen deposit was observed upon the treatment of hASCs with the induction medium containing IGF-I compared to the other treatment. In conclusion, our findings suggest IGF-I as a potent inducer of hepatic differentiation of hASCs and its potential to generate more functional hepatocyte-like cells.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/fisiologia , Tecido Adiposo/citologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Fator de Crescimento de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Queratina-18/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Albumina Sérica Humana/metabolismo , Células-Tronco/citologia , alfa-Fetoproteínas/metabolismo
9.
Biotechnol Bioeng ; 115(10): 2643-2653, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981277

RESUMO

The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the "bone gels") expressed matrix proteins like collagen type I and fibronectin, as well as bone-specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC-laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary-like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue-specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.


Assuntos
Matriz Óssea/metabolismo , Diferenciação Celular , Células Endoteliais/metabolismo , Hidrogéis/química , Osteogênese , Células-Tronco/metabolismo , Alicerces Teciduais/química , Adulto , Técnicas de Cocultura , Durapatita/química , Células Endoteliais/citologia , Feminino , Gelatina/química , Humanos , Ácido Hialurônico/química , Pessoa de Meia-Idade , Neovascularização Fisiológica , Osteopontina/biossíntese , Células-Tronco/citologia
10.
Cell Mol Life Sci ; 74(14): 2587-2600, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28224204

RESUMO

Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.


Assuntos
Tecido Adiposo/citologia , Ensaios Clínicos como Assunto , Células-Tronco Mesenquimais/citologia , Hipóxia Celular , Humanos , Modelos Biológicos
11.
Biochem Biophys Res Commun ; 490(2): 182-188, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28602697

RESUMO

Small molecule-based bone tissue engineering is emerging as a promising strategy for bone defects restoration. In this study, we intended to identify the roles and mechanisms of AR-A014418, a highly selective inhibitor of GSK3, on the osteogenic differentiation. We found that AR-A014418 exhibited a dose-dependent effect on osteogenic differentiation of human adipose-derived stem cells (hASCs). hASCs treated with AR-A014418 showed higher activity of ERK and mTORC2/Akt signaling. Administration of ERK inhibitor U0126 or knockdown of RICTOR by siRNA attenuated AR-A014418 induced osteogenic differentiation of hASCs. Our results suggested that AR-A014418 significantly promoted osteogenic potential of hASCs partially by the activation of ERK and mTORC2/Akt signaling pathway, and might be used for bone tissue engineering as an osteo-inductive factor.


Assuntos
Tecido Adiposo/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Complexos Multiproteicos/metabolismo , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/farmacologia , Ureia/análogos & derivados , Butadienos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Nitrilas/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Relação Estrutura-Atividade , Ureia/farmacologia
12.
Stem Cells ; 33(3): 833-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25446627

RESUMO

Mesenchymal stem cells (MSCs) show promise for cellular therapy and regenerative medicine. Human adipose tissue-derived stem cells (hASCs) represent an attractive source of seed cells in bone regeneration. How to effectively improve osteogenic differentiation of hASCs in the bone tissue engineering has become a very important question with profound translational implications. Numerous regulatory pathways dominate osteogenic differentiation of hASCs involving transcriptional factors and signaling molecules. However, how these factors combine with each other to regulate hASCs osteogenic differentiation still remains to be illustrated. The highly conserved developmental proteins TWIST play key roles for transcriptional regulation in mesenchymal cell lineages. This study investigates TWIST1 function in hASCs osteogenesis. Our results show that TWIST1 shRNA silencing increased the osteogenic potential of hASCs in vitro and their skeletal regenerative ability when applied in vivo. We demonstrate that the increased osteogenic capacity observed with TWIST1 knockdown in hASCs is mediated through endogenous activation of BMP and ERK/FGF signaling leading, in turn, to upregulation of TAZ, a transcriptional modulator of MSCs differentiation along the osteoblast lineage. Inhibition either of BMP or ERK/FGF signaling suppressed TAZ upregulation and the enhanced osteogenesis in shTWIST1 hASCs. Cosilencing of both TWIST1 and TAZ abrogated the effect elicited by TWIST1 knockdown thus, identifying TAZ as a downstream mediator through which TWIST1 knockdown enhanced osteogenic differentiation in hASCs. Our functional study contributes to a better knowledge of molecular mechanisms governing the osteogenic ability of hASCs, and highlights TWIST1 as a potential target to facilitate in vivo bone healing.


Assuntos
Proteínas Nucleares/metabolismo , Engenharia Tecidual/métodos , Proteína 1 Relacionada a Twist/metabolismo , Aciltransferases , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteína 1 Relacionada a Twist/genética , Regulação para Cima
13.
Mol Cell Biochem ; 413(1-2): 69-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26724952

RESUMO

Human adipose-derived stem cells (hASCs) become an appealing source for regenerative medicine. However, with the multi-passage or cryopreservation for large-scale growth procedures in terms of preclinical and clinical purposes, hASCs often reveal defective cell viability, which is a major obstacle for cell therapy. In our study, the effects of induced pluripotent stem cells-derived conditioned medium (iPS-CM) on the proliferation and anti-apoptosis in hASCs were investigated. hASCs at passage 1 were identified by the analysis of typical surface antigens with flow cytometry assay and adipogenic and osteogenic differentiation. The effect of iPS-CM on the proliferation in hASCs was analyzed by cell cycle assay and Ki67/P27 quantitative polymerase chain reaction analysis. The effect of iPS-CM on the anti-apoptosis of hASCs irradiated by 468 J/m(2) of ultraviolet C was investigated by annexin v/propidium iodide analysis, mitochondrial membrane potential assay, intracellular reactive oxygen species assay, Western blotting and caspase activity assays. The effect of iPS-CM on the surface antigen expressions of hASCs was analyzed using flow cytometry assay. The levels of Activin A and bFGF in culture supernatant of hASCs with different treatments were also detected by enzyme-linked immunosorbent assay. iPS-CM promoted proliferation and inhibited apoptosis of hASCs. This discovery demonstrates that iPS-CM might be used as one of the available means to overcome the propagation obstacle for hASCs and make for large-scale growth procedures in terms of preclinical and clinical purposes.


Assuntos
Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco/efeitos dos fármacos , Ativinas/metabolismo , Antígenos de Superfície/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Medicina Regenerativa , Células-Tronco/citologia , Células-Tronco/imunologia
14.
Biochim Biophys Acta ; 1832(12): 2136-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959047

RESUMO

Mesenchymal stem cells (MSCs) accelerate regeneration of ischemic or injured tissues by stimulation of angiogenesis through a paracrine mechanism. Tumor necrosis factor-α (TNF-α)-activated MSCs secrete pro-angiogenic cytokines, including IL-6 and IL-8. In the present study, using an ischemic hindlimb animal model, we explored the role of IL-6 and IL-8 in the paracrine stimulation of angiogenesis and tissue regeneration by TNF-α-activated MSCs. Intramuscular injection of conditioned medium derived from TNF-α-treated MSCs (TNF-α CM) into the ischemic hindlimb resulted in attenuated severe limb loss and stimulated blood perfusion and angiogenesis in the ischemic limb. Immunodepletion of IL-6 and IL-8 resulted in attenuated TNF-α CM-stimulated tissue repair, blood perfusion, and angiogenesis. In addition, TNF-α CM induced migration of human cord blood-derived endothelial progenitor cells (EPCs) through IL-6- and IL-8-dependent mechanisms in vitro. Intramuscular injection of TNF-α CM into the ischemic limb led to augmented homing of tail vein-injected EPCs into the ischemic limb in vivo and immunodepletion of IL-6 or IL-8 from TNF-α CM attenuated TNF-α CM-stimulated homing of EPCs. In addition, intramuscular injection of recombinant IL-6 and IL-8 proteins resulted in increased homing of intravenously transplanted EPCs into the ischemic limb and improved blood perfusion in vivo. These results suggest that TNF-α CM stimulates angiogenesis and tissue repair through an increase in homing of EPCs through paracrine mechanisms involving IL-6 and IL-8.


Assuntos
Movimento Celular , Meios de Cultivo Condicionados/farmacologia , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/citologia , Isquemia/tratamento farmacológico , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Membro Posterior/metabolismo , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/deficiência , Interleucina-6/imunologia , Interleucina-8/deficiência , Interleucina-8/imunologia , Isquemia/metabolismo , Isquemia/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Necrose , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Cicatrização
15.
Biochim Biophys Acta ; 1834(11): 2380-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23376432

RESUMO

Stem cells have been considered as possible therapeutic vehicles for different health related problems such as cardiovascular and neurodegenerative diseases and cancer. Secreted molecules are key mediators in cell-cell interactions and influence the cross talk with the surrounding tissues. There is strong evidence supporting that crucial cellular functions such as proliferation, differentiation, communication and migration are strictly regulated from the cell secretome. The investigation of stem cell secretome is accumulating continuously increasing interest given the potential use of these cells in regenerative medicine. The scope of the review is to report the main findings from the investigation of stem cell secretome by the use of contemporary proteomics methods and discuss the current status of research in the field. This article is part of a Special Issue entitled: An Updated Secretome.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Humanos , Modelos Moleculares , Proteoma/análise , Via Secretória
16.
Hum Cell ; 37(1): 181-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787969

RESUMO

Stem cell therapy is a promising treatment in regenerative medicine. Human adipose-derived stem/stromal cells (hASCs), a type of mesenchymal stem cell, are easy to harvest. In plastic and aesthetic surgery, hASC may be applied in the treatment of fat grafting, wound healing, and scar remodeling. Platelet-rich plasma (PRP) contains various growth factors, including platelet-derived growth factor (PDGF), which accelerates wound healing. We previously reported that PRP promotes the proliferation of hASC via multiple signaling pathways, and we evaluated the effect of PRP on the stimulation of hASC adhesion and migration, leading to the proliferation of these cells. When hASCs were treated with PRP, AKT, ERK1/2, paxillin and RhoA were rapidly activated. PRP treatment led to the formation of F-actin stress fibers. Strong signals for integrin ß1, paxillin and RhoA at the cell periphery of RPR-treated cells indicated focal adhesion. PRP promoted cell adhesion and movement of hASC, compared with the control group. Imatinib, an inhibitor of the PDGF receptor tyrosine kinase, inhibited the promotion of PRP-dependent cell migration. PDGF treatment of hASCs also stimulated cell adhesion and migration but to a lesser extent than PRP treatment. PRP promoted the adhesion and the migration of hASC, mediated by the activation of AKT in the integrin signaling pathway. PRP treatment was more effective than PDGF treatment in enhancing cell migration. Thus, the ability of PRPs to promote migration of hASC to enhance cell growth is evident.


Assuntos
Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Humanos , Paxilina/metabolismo , Adesão Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/metabolismo , Plasma Rico em Plaquetas/metabolismo
17.
Front Endocrinol (Lausanne) ; 15: 1395750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859907

RESUMO

Background: The beneficial effect of thermogenic adipocytes in maintaining body weight and protecting against metabolic disorders has raised interest in understanding the regulatory mechanisms defining white and beige adipocyte identity. Although alternative splicing has been shown to propagate adipose browning signals in mice, this has yet to be thoroughly investigated in human adipocytes. Methods: We performed parallel white and beige adipogenic differentiation using primary adipose stem cells from 6 unrelated healthy subjects and assessed differential gene and isoform expression in mature adipocytes by RNA sequencing. Results: We find 777 exon junctions with robust differential usage between white and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only 10% of these differentially spliced genes are also differentially expressed, indicating that alternative splicing constitutes an additional layer of gene expression regulation during beige adipocyte differentiation. Functional classification of alternative isoforms points to a gain of function for key thermogenic transcription factors such as PPARG and CITED1, and enzymes such as PEMT, or LPIN1. We find that a large majority of the splice variants arise from differential TSS usage, with beige-specific TSSs being enriched for PPARγ and MED1 binding compared to white-specific TSSs. Finally, we validate beige specific isoform expression at the protein level for two thermogenic regulators, PPARγ and PEMT. Discussion: These results suggest that differential isoform expression through alternative TSS usage is an important regulatory mechanism for human adipocyte thermogenic specification.


Assuntos
Adipócitos Bege , Processamento Alternativo , Isoformas de Proteínas , Termogênese , Humanos , Adipócitos Bege/metabolismo , Termogênese/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Diferenciação Celular , Adipogenia/genética , Masculino , Feminino , Adulto , Células Cultivadas , Regulação da Expressão Gênica , PPAR gama/genética , PPAR gama/metabolismo
18.
Bioeng Transl Med ; 8(2): e10397, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925682

RESUMO

Bioprinted cell constructs have been investigated for regeneration of various tissues. However, poor cell-cell interactions have limited their utility. Although cell-spheroids offer an alternative for efficient cell-cell interactions, they complicate bioprinting. Here, we introduce a new cell-printing process, fabricating cell-spheroids and cell-loaded constructs together without preparation of cell-spheroids in advance. Cells in mineral oil droplets self-assembled to form cell-spheroids due to the oil-aqueous interaction, exhibiting similar biological functions to the conventionally prepared cell-spheroids. By controlling printing parameters, spheroid diameter and location could be manipulated. To demonstrate the feasibility of this process, we fabricated hybrid cell constructs, consisting of endothelial cell-spheroids and stem cells loaded decellularized extracellular matrix/ß-tricalcium phosphate struts for regenerating vascularized bone. The hybrid cell constructs exhibited strong angiogenic/osteogenic activities as a result of increased secretion of signaling molecules and synergistic crosstalk between the cells.

19.
J Orthop Translat ; 39: 163-176, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950198

RESUMO

Background: Intervertebral disc degeneration (IDD) is a complex chronic disease involving nucleus pulposus cells (NPCs) senescence, apoptosis, autophagy and extracellular matrix (ECM) degradation. In this study, we aimed to investigate the role of human adipose tissue stem cells (hASCs)-derived exosomal miR-155-5p targeting TGFßR2 in IDD and the mechanisms involved. Then miRNA sequencing was performed, and hASCs-derived Exo (hASCs-Exo) was extracted and characterized. Methods: First, NPCs were treated with different concentrations of LPS. Then miRNA sequencing was performed, and hASCs-Exo was extracted and characterized. NPCs were treated with PBS or autophagy inhibitor 3-MA. NPCs were transfected with miR-155-5p mimic, si-TGFßR2 and negative control. Cell viability, apoptosis, ROS, caspase-1+PI, pyroptosis markers, inflammatory cytokines, autophagy markers, Aggrecan, MMP13, and Akt/mTOR pathway-related factors were measured. Bioinformatics prediction and dual-luciferase were performed to verify the binding sites of miR-155-5p to TGFßR2. Finally, we validated the role of hASCs-derived exosomal miR-155-5p on IDD in vivo. Results: LPS promoted pyroptosis of NPCs, and inhibited autophagy and ECM synthesis. MiR-155-5p was characterized as an inflammation-related miRNA in NPCs. HASCs-derived exosomal miR-155-5p inhibited pyroptosis of NPCs and promoted autophagy and ECM synthesis. After bioinformatics prediction and verification, it was found that miR-155-5p targeted TGFßR2. Moreover, miR-155-5p targeted TGFßR2 to promote autophagy and inhibit pyroptosis in NPCs. In vivo experiments revealed that hASCs-derived exosomal miR-155-5p alleviated IDD in rats. Conclusions: HASCs-derived exosomal miR-155-5p alleviated IDD by targeting TGFßR2 to promote autophagy and reduce pyroptosis. Our study may provide a new therapeutic target for IDD. Translational Potential of this Article: HASCs-derived exosomal miR-155-5p is expected to be a biomarker for clinical treatment of IDD. Our study may provide a new therapeutic target for IDD.

20.
Life (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36836769

RESUMO

Excessive preadipocyte differentiation is linked with obesity. Although previous studies have shown that p38 MAPK is associated with adipogenesis, the regulation of preadipocyte differentiation by TAK-715, an inhibitor of p38 mitogen-activated protein kinase (MAPK), remains unclear. Interestingly, TAK-715 at 10 µM vastly suppressed the accumulation of lipid and intracellular triglyceride (TG) content with no cytotoxicity during 3T3-L1 preadipocyte differentiation. On mechanistic levels, TAK-715 significantly decreased the expressions of the CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and perilipin A. Similarly, the phosphorylation of the signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells was also reduced with TAK-715 treatment. Moreover, TAK-715 significantly blocked the phosphorylation of activating transcription factor-2 (ATF-2), a p38 MAPK downstream molecule, during 3T3-L1 preadipocyte differentiation. Of importance, TAK-715 also markedly impeded the phosphorylation of p38 MAPK and suppressed lipid accumulation during the adipocyte differentiation of human adipose stem cells (hASCs). Concisely, this is the first report that TAK-715 (10 µM) has potent anti-adipogenic effects on the adipogenesis process of 3T3-L1 cells and hASCs through the regulation of the expression and phosphorylation of p38 MAPK, C/EBP-α, PPAR-γ, STAT-3, FAS, and perilipin A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA