Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260361

RESUMO

Human pluripotent stem cells (hPSCs), derived from individuals or genetically modified with disease-related mutations and variants, have revolutionised studies of human disease. Researchers are beginning to exploit the extraordinary potential of stem cell technology to screen for new drugs to treat intractable diseases, ideally without side-effects. However, a major problem is that the differentiated cell types on which these models are based are immature; they resemble fetal and not adult cells. Here, we discuss the nature and hurdles of hPSC maturation, using cardiomyocytes as an example. We review methods used to induce cardiomyocyte maturation in culture and consider remaining challenges for their integration into research on human disease and drug development pipelines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos/metabolismo , Diferenciação Celular
2.
Stem Cells ; 38(1): 90-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566285

RESUMO

Genetically encoded fluorescent voltage indicators, such as ArcLight, have been used to report action potentials (APs) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). However, the ArcLight expression, in all cases, relied on a high number of lentiviral vector-mediated random genome integrations (8-12 copy/cell), raising concerns such as gene disruption and alteration of global and local gene expression, as well as loss or silencing of reporter genes after differentiation. Here, we report the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease technique to develop a hiPSC line stably expressing ArcLight from the AAVS1 safe harbor locus. The hiPSC line retained proliferative ability with a growth rate similar to its parental strain. Optical recording with conventional epifluorescence microscopy allowed the detection of APs as early as 21 days postdifferentiation, and could be repeatedly monitored for at least 5 months. Moreover, quantification and analysis of the APs of ArcLight-CMs identified two distinctive subtypes: a group with high frequency of spontaneous APs of small amplitudes that were pacemaker-like CMs and a group with low frequency of automaticity and large amplitudes that resembled the working CMs. Compared with FluoVolt voltage-sensitive dye, although dimmer, the ArcLight reporter exhibited better optical performance in terms of phototoxicity and photostability with comparable sensitivities and signal-to-noise ratios. The hiPSC line with targeted ArcLight engineering design represents a useful tool for studying cardiac development or hiPSC-derived cardiac disease models and drug testing.


Assuntos
Potenciais de Ação/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas , Terapia Genética , Humanos
3.
BMC Bioinformatics ; 21(1): 187, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408861

RESUMO

BACKGROUND: Cardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression of fluorescent markers. RESULTS: In this paper, we report on the development of a fully automated image analysis system for quantification of cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy C-mean clustering of cardiac α-actinin signal, and finally nuclear signal propagation. When compared to manual segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively. CONCLUSIONS: Our results show that our fully automated image analysis system can reliably segment cardiomyocytes even with heterogeneous α-actinin signals.


Assuntos
Cardiotoxicidade/patologia , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/patologia , Automação , Comunicação Celular , Contagem de Células , Linhagem Celular , Doxorrubicina/efeitos adversos , Humanos , Fenótipo
4.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255277

RESUMO

Relevant, predictive normal, or disease model systems are of vital importance for drug development. The difference between nonhuman models and humans could contribute to clinical trial failures despite ideal nonhuman results. As a potential substitute for animal models, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation and the tissue engineering technologies for drug assessment. Updates from the international multisite collaborators/administrations for development of novel drug discovery paradigms are also summarized.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Engenharia Tecidual
5.
J Mol Cell Cardiol ; 117: 62-71, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29474817

RESUMO

RATIONALE: Heart failure is characterized by electrical remodeling that contributes to arrhythmic risk. The unfolded protein response (UPR) is active in heart failure and can decrease protein levels by increasing mRNA decay, accelerating protein degradation, and inhibiting protein translation. OBJECTIVE: Therefore, we investigated whether the UPR downregulated cardiac ion channels that may contribute to arrhythmogenic electrical remodeling. METHODS: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study cardiac ion channels. Action potentials (APs) and ion channel currents were measured by patch clamp recording. The mRNA and protein levels of channels and the UPR effectors were determined by quantitative RT-PCR and Western blotting. Tunicamycin (TM, 50 ng/mL and 5 µg/mL), GSK2606414 (GSK, 300 nmol/L), and 4µ8C (5 µmol/L) were utilized to activate the UPR, inhibit protein kinase-like ER kinase (PERK) and inositol-requiring protein-1 (IRE1), respectively. RESULTS: TM-induced activation of the UPR caused significant prolongation of the AP duration (APD) and a reduction of the maximum upstroke velocity (dV/dtmax) of the AP phase 0 in both acute (20-24 h) and chronic treatment (6 days). These changes were explained by reductions in the sodium, L-type calcium, the transient outward and rapidly/slowly activating delayed rectifier potassium currents. Nav1.5, Cav1.2, Kv4.3, and KvLQT1 channels showed concomitant reductions in mRNA and protein levels under activated UPR. Inhibition of PERK or IRE1 shortened the APD and reinstated dV/dtmax. The PERK branch regulated Nav1.5, Kv4.3, hERG, and KvLQT1. The IRE1 branch regulated Nav1.5, hERG, KvLQT1, and Cav1.2. CONCLUSIONS: Activated UPR downregulates all major cardiac ion currents and results in electrical remodeling in hiPSC-CMs. Both PERK and IRE1 branches downregulate Nav1.5, hERG, and KvLQT1. The PERK branch specifically downregulates Kv4.3, while the IRE1 branch downregulates Cav1.2. Therefore, the UPR contributed to electrical remodeling, and targeting the UPR might be anti-arrhythmic.


Assuntos
Regulação para Baixo , Células-Tronco Pluripotentes Induzidas/citologia , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Resposta a Proteínas não Dobradas , Potenciais de Ação/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Endorribonucleases/metabolismo , Humanos , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , eIF-2 Quinase/metabolismo
6.
Toxicol Appl Pharmacol ; 308: 66-76, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27520758

RESUMO

Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels.


Assuntos
Amiodarona/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Cálcio Tipo L , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
7.
ACS Biomater Sci Eng ; 10(4): 2498-2509, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531866

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) offer versatile applications in tissue engineering and drug screening. To facilitate the monitoring of hiPSC cardiac differentiation, a noninvasive approach using convolutional neural networks (CNNs) was explored. HiPSCs were differentiated into cardiomyocytes and analyzed using the quantitative real-time polymerase chain reaction (qRT-PCR). The bright-field images of the cells at different time points were captured to create the dataset. Six pretrained models (AlexNet, GoogleNet, ResNet 18, ResNet 50, DenseNet 121, VGG 19-BN) were employed to identify different stages in differentiation. VGG 19-BN outperformed the other five CNNs and exhibited remarkable performance with 99.2% accuracy, recall, precision, and F1 score and 99.8% specificity. The pruning process was then applied to the optimal model, resulting in a significant reduction of model parameters while maintaining high accuracy. Finally, an automation application using the pruned VGG 19-BN model was developed, facilitating users in assessing the cell status during the myocardial differentiation of hiPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Diferenciação Celular , Algoritmos , Redes Neurais de Computação
8.
J Cachexia Sarcopenia Muscle ; 15(2): 536-551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221511

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cães , Cardiomiopatia Dilatada/etiologia , Distrofina/genética , Distrofina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Camundongos Endogâmicos mdx , Cálcio/metabolismo , Proteômica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fibrose
9.
Artigo em Inglês | MEDLINE | ID: mdl-38470291

RESUMO

Tropomyosin (TPM) is an essential sarcomeric component, stabilizing the thin filament and facilitating actin's interaction with myosin. In mammals, including humans, there are four TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which generates a multitude of TPM isoforms via alternative splicing and using different promoters. In this study, we have examined the expression of transcripts as well as proteins of various sarcomeric TPM isoforms during human inducible pluripotent stem cell differentiation into cardiomyocytes. During the differentiation time course, we harvested cells on Days 0, 5, 10, 15, and 20 to analyze for various sarcomeric TPM transcripts by qRT-PCR and for sarcomeric TPM proteins using two-dimensional Western blot with sarcomeric TPM-specific CH1 monoclonal antibody followed by mass spectra analyses. Our results show increasing levels of total TPM transcripts and proteins during the period of differentiation, but varying levels of specific TPM isoforms during the same period. By Day 20, the rank order of TPM transcripts was TPM1α > TPM1κ > TPM2α > TPM1µ > TPM3α > TPM4α. TPM1α was the dominant protein produced with some TPM2 and much less TPM1κ and µ. Interestingly, small amounts of two lower molecular weight TPM3 isoforms were detected on Day 15. To the best of our knowledge this is the first demonstration of TPM1µ non-muscle isoform protein expression before and during cardiac differentiation.

10.
Adv Healthc Mater ; : e2303477, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768494

RESUMO

Here an electrical stimulation system is described for maturing microfiber-shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber-shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.

11.
Bioengineering (Basel) ; 10(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370633

RESUMO

Electrospun nanofiber constructs represent a promising alternative for mimicking the natural extracellular matrix in vitro and have significant potential for cardiac patch applications. While the effect of fiber orientation on the morphological structure of cardiomyocytes has been investigated, fibers only provide contact guidance without accounting for substrate stiffness due to their deposition on rigid substrates (e.g., glass or polystyrene). This paper introduces an in situ fabrication method for suspended and well aligned nanofibrous scaffolds via roller electrospinning, providing an anisotropic microenvironment with reduced stiffness for cardiac tissue engineering. A fiber surface modification strategy, utilizing oxygen plasma treatment combined with sodium dodecyl sulfate solution, was proposed to maintain the hydrophilicity of polycaprolactone (PCL) fibers, promoting cellular adhesion. Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), cultured on aligned fibers, exhibited an elongated morphology with extension along the fiber axis. In comparison to Petri dishes and suspended random fiber scaffolds, hiPSC-CMs on suspended aligned fiber scaffolds demonstrated enhanced sarcomere organization, spontaneous synchronous contraction, and gene expression indicative of maturation. This work demonstrates the suspended and aligned nano-fibrous scaffold provides a more realistic biomimetic environment for hiPSC-CMs, which promoted further research on the inducing effect of fiber scaffolds on hiPSC-CMs microstructure and gene-level expression.

12.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443731

RESUMO

Heart regeneration after myocardial infarction (MI) using human stem cell-derived cardiomyocytes (CMs) is rapidly accelerating with large animal and human clinical trials. However, vascularization methods to support the engraftment, survival, and development of implanted CMs in the ischemic environment of the infarcted heart remain a key and timely challenge. To this end, we developed a dual remuscularization-revascularization therapy that is evaluated in a rat model of ischemia-reperfusion MI. This study details the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for engineering cardiac tissue containing patterned engineered vessels 400 µm in diameter. Vascularized engineered human myocardial tissues (vEHMs) are cultured in static conditions or perfused in vitro prior to implantation and evaluated after two weeks. Immunohistochemical staining indicates improved engraftment of hiPSC-CMs in in vitro-perfused vEHMs with greater expression of SMA+ vessels and evidence of inosculation. Three-dimensional vascular reconstructions reveal less tortuous and larger intra-implant vessels, as well as an improved branching hierarchy in in vitro-perfused vEHMs relative to non-perfused controls. Exploratory RNA sequencing of explanted vEHMs supports the hypothesis that co-revascularization impacts hiPSC-CM development in vivo. Our approach provides a strong foundation to enhance vEHM integration, develop hierarchical vascular perfusion, and maximize hiPSC-CM engraftment for future regenerative therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Ratos , Animais , Arteríolas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Perfusão
13.
Stem Cell Res Ther ; 14(1): 361, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087340

RESUMO

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic has had an enormous impact on our societies. Moreover, the disease's extensive and sustained symptoms are now becoming a nonnegligible medical challenge. In this respect, data indicate that heart failure is one of the most common readmission diagnoses among COVID-19 patients. METHODS: In this study, we used human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes to develop an in vitro model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and studied the dynamic changes occurring in cardiomyocytes after SARS-CoV-2 infection. RESULTS: To this end, we have created an effective time series SARS-CoV-2 infection model exhibiting different functional patterns of up- and downregulated proteins, and demonstrating that SARS-CoV-2 mainly affects (i) the lipid and the energy metabolism of hiPSC-derived cardiomyocytes during the early infection stage, and (ii) the DNA repair ability of cardiomyocytes during the late infection stage. By analyzing the proteome changes occurring at different infection timepoints, we were able to observe that the simulated disease (COVID-19) course developed rapidly, and that each of the studied timepoints was characterized by a distinct protein expression pattern. CONCLUSIONS: Our findings highlight the importance of early detection and personalized treatment based on the disease stage. Finally, by combing the proteomics data with virus-host interaction network analysis, we were able to identify several potential drug targets for the disease.


Assuntos
COVID-19 , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo
14.
Adv Sci (Weinh) ; 10(35): e2301831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849230

RESUMO

In vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Hidrogéis , Fenômenos Mecânicos , Contração Muscular
15.
Stem Cell Reports ; 18(7): 1394-1404, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37390826

RESUMO

Functional vasculature is essential for delivering nutrients, oxygen, and cells to the heart and removing waste products. Here, we developed an in vitro vascularized human cardiac microtissue (MT) model based on human induced pluripotent stem cells (hiPSCs) in a microfluidic organ-on-chip by coculturing hiPSC-derived, pre-vascularized, cardiac MTs with vascular cells within a fibrin hydrogel. We showed that vascular networks spontaneously formed in and around these MTs and were lumenized and interconnected through anastomosis. Anastomosis was fluid flow dependent: continuous perfusion increased vessel density and thus enhanced the formation of the hybrid vessels. Vascularization further improved endothelial cell (EC)-cardiomyocyte communication via EC-derived paracrine factors, such as nitric oxide, and resulted in an enhanced inflammatory response. The platform sets the stage for studies on how organ-specific EC barriers respond to drugs or inflammatory stimuli.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Neovascularização Patológica , Células Endoteliais , Diferenciação Celular
16.
Stem Cell Res Ther ; 14(1): 266, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740238

RESUMO

BACKGROUND: Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS: Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS: The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS: By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.


Assuntos
Cálcio , Taquicardia Ventricular , Humanos , Miócitos Cardíacos , Flecainida/farmacologia , Propranolol/farmacologia , Propranolol/uso terapêutico , Antiarrítmicos , Medicina de Precisão , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética , Verapamil/farmacologia , Verapamil/uso terapêutico
17.
Methods Mol Biol ; 2547: 241-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36068467

RESUMO

Calcium imaging is an invaluable technique to detect and characterize calcium flux in cells. The use of calcium dye provides information on the concentration and spatial distribution of calcium. Calcium imaging is a well-established technique to assess the calcium-induced calcium release mechanism in cardiomyocytes. It can also be used to characterize mutations in genes crucial for this mechanism that frequently causes arrhythmia. Here we describe a high-throughput methodology of calcium imaging that records individual calcium transients in more than 10,000 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in less than 30 min.


Assuntos
Células-Tronco Pluripotentes Induzidas , Arritmias Cardíacas , Cálcio , Diferenciação Celular , Humanos , Miócitos Cardíacos , Testes Farmacogenômicos
18.
Methods Mol Biol ; 2483: 141-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286674

RESUMO

In the last years human induced pluripotent stem cell-derived cardiomyocytes (hIPS-CMs) have emerged as a promising alternative to rodent-derived cardiomyocytes. However, as the differentiation process is lengthy and commercially available cells are expensive, the cell number is limited. Here we provide detailed information on how to scale down 2D cell cultures of hIPS-CMs for the purpose of cAMP FRET measurements, thereby extending the number of possible experiments by more than tenfold. Crucial factors like cell density or cell number to culturing media volume can be maintained exactly as under normal culturing conditions and existing equipment does not need to be modified.The chapter covers the preparation of downscaled cell culture vessels, coating and seeding procedures, transduction or transfection of the cells with a genetically encoded cAMP FRET sensor, performing real-time cAMP FRET measurements with this sensor and the analysis of generated imaging data. Numbers for seeding areas, seeding densities, coating volumes and concentrations, media volumes, and concentrations of reagents are given as guidelines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Miócitos Cardíacos
19.
J Biomed Mater Res A ; 110(12): 1932-1943, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851742

RESUMO

Synthetic scaffolds are needed for generating organized neo-myocardium constructs to promote functional tissue repair. This study investigated the biocompatibility of an elastomeric electrospun degradable polar/hydrophobic/ionic polyurethane (D-PHI) composite scaffold with human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The composite material was electrospun to generate scaffolds, with nanofibres oriented in aligned or random directions. These features enabled the authors to evaluate the effect of characteristic elements which mimic that of the native extracellular matrix (alignment, chemical heterogeneity, and fiber topography) on hiPSC-CMs activity. The functional nature of the hiPSC-CM cultured on gelatin and Matrigel-coated scaffolds were assessed, investigating the influence of protein interactions with the synthetic substrate on subsequent cell phenotype. After 7 days of culture, high hiPSC-CM viability was observed on the scaffolds. The cells on the aligned scaffold were elongated and demonstrated aligned sarcomeres that oriented parallel to the direction of the fibers, while the cells on random scaffolds and a tissue culture polystyrene (TCPS) control did not exhibit such an organized morphology. The hiPSC-CMs cultured on the scaffolds and TCPS expressed similar levels of cardiac troponin-T, but there was a higher expression of ventricular myosin light chain-2 on the D-PHI composite scaffolds versus TCPS, indicating a higher proportion of hiPSC-CM exhibiting a ventricular cardiomyocyte like phenotype. Within 7 days, the hiPSC-CMs on aligned scaffolds and TCPS beat synchronously and had similar conductive velocities. These preliminary results show that aligned D-PHI elastomeric scaffolds allow hiPSC-CMs to demonstrate important cardiomyocytes characteristics, critical to enabling their future potential use for cardiac tissue regeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanofibras , Humanos , Células Cultivadas , Gelatina/metabolismo , Miócitos Cardíacos , Cadeias Leves de Miosina/metabolismo , Poliestirenos , Poliuretanos , Alicerces Teciduais , Troponina T/metabolismo
20.
Front Cell Dev Biol ; 10: 1038867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274846

RESUMO

Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) represent an excellent in vitro model in cardiovascular research. Changes in their action potential (AP) dynamics convey information that is essential for disease modeling, drug screening and toxicity evaluation. High-throughput optical AP recordings utilizing intramolecular Förster resonance energy transfer (FRET) of the voltage-sensitive fluorescent protein (VSFP) have emerged as a substitute or complement to the resource-intensive patch clamp technique. Here, we functionally validated our recently generated voltage indicator hiPSC lines stably expressing CAG-promoter-driven VSFP in the AAVS1 safe harbor locus. By combining subtype-specific cardiomyocyte differentiation protocols, we established optical AP recordings in ventricular, atrial, and nodal CMs in 2D monolayers using fluorescence microscopy. Moreover, we achieved high-throughput optical AP measurements in single hiPSC-derived CMs in a 3D context. Overall, this system greatly expands the spectrum of possibilities for high-throughput, non-invasive and long-term AP analyses in cardiovascular research and drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA