Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.381
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 77: 193-212, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100405

RESUMO

Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.


Assuntos
Bacteriófagos , Microbiota , Animais , Archaea/genética , Bactérias/genética , Genômica
2.
Proc Natl Acad Sci U S A ; 121(2): e2306906120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165940

RESUMO

Cold-water species in temperate lakes face two simultaneous climate-driven ecosystem changes: warming and browning of their waters. Browning refers to reduced transparency arising from increased dissolved organic carbon (DOC), which absorbs solar energy near the surface. It is unclear whether the net effect is mitigation or amplification of climate warming impacts on suitable oxythermal habitat (<20 °C, >5 mgO/L) for cold-loving species because browning expands the vertical distribution of both cool water and oxygen depletion. We analyzed long-term trends and high-frequency sensor data from browning lakes in New York's Adirondack region to assess the contemporary status of summertime habitat for lacustrine brook trout. Across two decades, surface temperatures increased twice as fast and bottom dissolved oxygen declined >180% faster than average trends for temperate lakes. We identify four lake categories based on oxythermal habitat metrics: constrained, squeezed, overheated, and buffered. In most of our study lakes, trout face either seasonal loss (7 of 15) or dramatic restriction (12 to 21% of the water column; 5 of 15) of suitable habitat. These sobering statistics reflect rapid upward expansion of oxygen depletion in lakes with moderate or high DOC relative to compression of heat penetration. Only in very clear lakes has browning potentially mitigated climate warming. Applying our findings to extensive survey data suggests that decades of browning have reduced oxythermal refugia in most Adirondack lakes. We conclude that joint warming and browning may preclude self-sustaining cold-water fisheries in many temperate lakes; hence, oxythermal categorization is essential to guide triage strategies and management interventions.


Assuntos
Ecossistema , Lagos , Animais , Água , Truta , Oxigênio
3.
Proc Natl Acad Sci U S A ; 121(15): e2313899121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573963

RESUMO

River networks are composed of a mainstem and tributaries. These tributaries dissect landscapes, regulate water and habitat availability, and transport sediment and nutrients. Despite the importance of tributaries, we currently lack theory and data describing whether and how tributary length and spacing varies within watersheds, thereby limiting our ability to accurately describe river network geometry. We address this knowledge gap by analyzing 4,696 tributaries across six landscapes with varying climate, tectonic setting, and lithology. Our results show that both tributary length and spacing systematically increase with downstream distance along the mainstem river, following a power-law scaling. This power-law scaling can be modulated by basin shape, with tributaries becoming shorter and, in some cases, more closely spaced as basin elongate. Furthermore, the power-law scaling may break down in cases where river networks have been disturbed by pervasive faulting, raising the possibility that the scaling we observe is not unique to all branching networks, and instead may be universal across undisturbed fluvial networks. These findings can be used to improve predictions of river network geometry and potentially to distinguish fluvial river networks from other branching networks.

4.
Proc Natl Acad Sci U S A ; 121(22): e2321294121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771872

RESUMO

Males and females often have different roles in reproduction, although the origin of these differences has remained controversial. Explaining the enigmatic reversed sex roles where males sacrifice their mating potential and provide full parental care is a particularly long-standing challenge in evolutionary biology. While most studies focused on ecological factors as the drivers of sex roles, recent research highlights the significance of social factors such as the adult sex ratio. To disentangle these propositions, here, we investigate the additive and interactive effects of several ecological and social factors on sex role variation using shorebirds (sandpipers, plovers, and allies) as model organisms that provide the full spectrum of sex role variation including some of the best-known examples of sex-role reversal. Our results consistently show that social factors play a prominent role in driving sex roles. Importantly, we show that reversed sex roles are associated with both male-skewed adult sex ratios and high breeding densities. Furthermore, phylogenetic path analyses provide general support for sex ratios driving sex role variations rather than being a consequence of sex roles. Together, these important results open future research directions by showing that different mating opportunities of males and females play a major role in generating the evolutionary diversity of sex roles, mating system, and parental care.


Assuntos
Evolução Biológica , Razão de Masculinidade , Comportamento Sexual Animal , Meio Social , Animais , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Reprodução/fisiologia , Charadriiformes/fisiologia , Filogenia , Aves/fisiologia , Papel de Gênero
5.
Proc Natl Acad Sci U S A ; 121(19): e2311146121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648469

RESUMO

The pace and scale of environmental change represent major challenges to many organisms. Animals that move long distances, such as migratory birds, are especially vulnerable to change since they need chains of intact habitat along their migratory routes. Estimating the resilience of such species to environmental changes assists in targeting conservation efforts. We developed a migration modeling framework to predict past (1960s), present (2010s), and future (2060s) optimal migration strategies across five shorebird species (Scolopacidae) within the East Asian-Australasian Flyway, which has seen major habitat deterioration and loss over the last century, and compared these predictions to empirical tracks from the present. Our model captured the migration strategies of the five species and identified the changes in migrations needed to respond to habitat deterioration and climate change. Notably, the larger species, with single or few major stopover sites, need to establish new migration routes and strategies, while smaller species can buffer habitat loss by redistributing their stopover areas to novel or less-used sites. Comparing model predictions with empirical tracks also indicates that larger species with the stronger need for adaptations continue to migrate closer to the optimal routes of the past, before habitat deterioration accelerated. Our study not only quantifies the vulnerability of species in the face of global change but also explicitly reveals the extent of adaptations required to sustain their migrations. This modeling framework provides a tool for conservation planning that can accommodate the future needs of migratory species.


Assuntos
Migração Animal , Aves , Mudança Climática , Ecossistema , Animais , Migração Animal/fisiologia , Aves/fisiologia , Conservação dos Recursos Naturais , Modelos Biológicos
6.
Proc Natl Acad Sci U S A ; 120(11): e2201553120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893275

RESUMO

Predicting the spread of populations across fragmented habitats is vital if we are to manage their persistence in the long term. We applied network theory with a model and an experiment to show that spread rate is jointly defined by the configuration of habitat networks (i.e., the arrangement and length of connections between habitat fragments) and the movement behavior of individuals. We found that population spread rate in the model was well predicted by algebraic connectivity of the habitat network. A multigeneration experiment with the microarthropod Folsomia candida validated this model prediction. The realized habitat connectivity and spread rate were determined by the interaction between dispersal behavior and habitat configuration, such that the network configurations that facilitated the fastest spread changed depending on the shape of the species' dispersal kernel. Predicting the spread rate of populations in fragmented landscapes requires combining knowledge of species-specific dispersal kernels and the spatial configuration of habitat networks. This information can be used to design landscapes to manage the spread and persistence of species in fragmented habitats.


Assuntos
Ecossistema , Modelos Biológicos , Dispersão de Sementes , Distribuição Animal , Animais
7.
Proc Natl Acad Sci U S A ; 120(37): e2217973120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639613

RESUMO

In social animals, success can depend on the outcome of group battles. Theoretical models of warfare predict that group fighting ability is proportional to two key factors: the strength of each soldier in the group and group size. The relative importance of these factors is predicted to vary across environments [F. W. Lanchester, Aircraft in Warfare, the Dawn of the Fourth Arm (1916)]. Here, we provide an empirical validation of the theoretical prediction that open environments should favor superior numbers, whereas complex environments should favor stronger soldiers [R. N. Franks, L. W. Partridge, Anim. Behav. 45, 197-199 (1993)]. We first demonstrate this pattern using simulated battles between relatively strong and weak soldiers in a computer-driven algorithm. We then validate this result in real animals using an ant model system: In battles in which the number of strong native meat ant Iridomyrmex purpureus workers is constant while the number of weak non-native invasive Argentine ant Linepithema humile workers increases across treatments, fatalities of I. purpureus are lower in complex than in simple arenas. Our results provide controlled experimental evidence that investing in stronger soldiers is more effective in complex environments. This is a significant advance in the empirical study of nonhuman warfare and is important for understanding the competitive balance among native and non-native invasive ant species.


Assuntos
Aeronaves , Formigas , Animais , Algoritmos , Pesquisa Empírica , Espécies Introduzidas
8.
Proc Natl Acad Sci U S A ; 120(48): e2312909120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983516

RESUMO

Fire activity during 2020 to 2021 in California, USA, was unprecedented in the modern record. More than 19,000 km2 of forest vegetation burned (10× more than the historical average), potentially affecting the habitat of 508 vertebrate species. Of the >9,000 km2 that burned at high severity, 89% occurred in large patches that exceeded historical estimates of maximum high-severity patch size. In this 2-y period, 100 vertebrate species experienced fire across >10% of their geographic range, 16 of which were species of conservation concern. These 100 species experienced high-severity fire across 5 to 14% of their ranges, underscoring potentially important changes to habitat structure. Species in this region are not adapted to high-severity megafires. Management actions, such as prescribed fires and mechanical thinning, can curb severe fire behavior and reduce the potential negative impacts of uncharacteristic fires on wildlife.


Assuntos
Animais Selvagens , Incêndios , Animais , Ecossistema , Florestas , California
9.
Proc Natl Acad Sci U S A ; 120(50): e2304411120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048469

RESUMO

Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might switch habitat affiliations across time and space: an organism may venture into human-modified areas in benign regions but retreat into thermally buffered forested habitats in areas with high temperatures. Here, we apply community occupancy models to a large-scale camera trapping dataset with 29 mammal species distributed over 2,485 sites across the continental United States, to ask three questions. First, are species' responses to forest and anthropogenic habitats consistent across continental scales? Second, do macroclimatic conditions explain spatial variation in species responses to land use? Third, can species traits elucidate which taxa are most likely to show climate-dependent habitat associations? We found that all species exhibited significant spatial variation in how they respond to land-use, tending to avoid anthropogenic areas and increasingly use forests in hotter regions. In the hottest regions, species occupancy was 50% higher in forested compared to open habitats, whereas in the coldest regions, the trend reversed. Larger species with larger ranges, herbivores, and primary predators were more likely to change their habitat affiliations than top predators, which consistently affiliated with high forest cover. Our findings suggest that climatic conditions influence species' space-use and that maintaining forest cover can help protect mammals from warming climates.


Assuntos
Ecossistema , Mamíferos , Animais , Humanos , Temperatura , Florestas , Biodiversidade , América do Norte , Conservação dos Recursos Naturais
10.
Proc Natl Acad Sci U S A ; 120(49): e2300861120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011572

RESUMO

Increasing landscape heterogeneity has been suggested to be an important strategy to strengthen natural pest control in crops, especially through enhancing the amount of seminatural habitats. Increasing crop diversity is also a promising strategy to complement or replace seminatural habitat when seminatural habitat is scarce. However, their relative or possibly interactive effects on pest and weed infestation remain poorly investigated, and the role of different types of seminatural habitats has been understudied. Using an extensive sampling effort in 974 arable fields across 7 y, we evaluated the separate and interactive effects of crop diversity (seven arable crop types) and the amount of four types of seminatural habitats (meadows, hay, forests, and hedgerows) in the landscape on pest and weed control. Meadows and crop diversity, respectively, supported insect pest and weed control services in agricultural landscapes through a complementarity effect. Crop diversity increased weed seed predation rate (by 16%) and reduced weed infestation (by 6%), whereas long-term grasslands (to a much higher degree than hay or woody habitats) increased insect pest predation rates (by 23%) and reduced pest infestation (by 19%) in most arable crops. Our results demonstrate that diversification of the agricultural landscape requires long-term grasslands as well as improved crop diversity to ensure the delivery of efficient pest and weed control services.


Assuntos
Agricultura , Pradaria , Animais , Agricultura/métodos , Ecossistema , Produtos Agrícolas , Insetos
11.
Proc Natl Acad Sci U S A ; 120(46): e2311548120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931096

RESUMO

We address a generalization of the concept of metapopulation capacity for trees and networks acting as the template for ecological interactions. The original measure had been derived from an insightful phenomenological model and is based on the leading eigenvalue of a suitable landscape matrix. It yields a versatile predictor of metapopulation persistence through a threshold value of the eigenvalue determined by ecological features of the focal species. Here, we present an analytical solution to a fundamental microscopic model that incorporates key ingredients of metapopulation dynamics and explicitly distinguishes between individuals comprising the "settled population" and "explorers" seeking colonization. Our approach accounts for general network characteristics (in particular graph-driven directional dispersal which is known to significantly constrain many ecological estimates) and yields a generalized version of the original model, to which it reduces for particular cases. Through examples, including real landscapes used as the template, we compare the predictions from our approach with those of the standard model. Results suggest that in several cases of practical interest, differences are significant. We also examine, with both models, how changes in habitat fragmentation, including removal, addition, or alteration in size, affect metapopulation persistence. The current approach demonstrates a high level of flexibility, enabling the incorporation of diverse "microscopic" elements and their impact on the resulting biodiversity landscape pattern.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Dinâmica Populacional , Biodiversidade , Árvores
12.
Proc Natl Acad Sci U S A ; 120(44): e2302440120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871198

RESUMO

Seed dispersal by frugivores is a fundamental function for plant community dynamics in fragmented landscapes, where forest remnants are typically embedded in a matrix of anthropogenic habitats. Frugivores can mediate both connectivity among forest remnants and plant colonization of the matrix. However, it remains poorly understood how frugivore communities change from forest to matrix due to the loss or replacement of species with traits that are less advantageous in open habitats and whether such changes ultimately influence the composition and traits of dispersed plants via species interactions. Here, we close this gap by using a unique dataset of seed-dispersal networks that were sampled in forest patches and adjacent matrix habitats of seven fragmented landscapes across Europe. We found a similar diversity of frugivores, plants, and interactions contributing to seed dispersal in forest and matrix, but a high turnover (replacement) in all these components. The turnover of dispersed seeds was smaller than that of frugivore communities because different frugivore species provided complementary seed dispersal in forest and matrix. Importantly, the turnover involved functional changes toward larger and more mobile frugivores in the matrix, which dispersed taller, larger-seeded plants with later fruiting periods. Our study provides a trait-based understanding of frugivore-mediated seed dispersal through fragmented landscapes, uncovering nonrandom shifts that can have cascading consequences for the composition of regenerating plant communities. Our findings also highlight the importance of forest remnants and frugivore faunas for ecosystem resilience, demonstrating a high potential for passive forest restoration of unmanaged lands in the matrix.


Assuntos
Ecossistema , Dispersão de Sementes , Florestas , Sementes , Frutas , Árvores
13.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38717941

RESUMO

Prokaryotes dominate the Tree of Life, but our understanding of the macroevolutionary processes generating this diversity is still limited. Habitat transitions are thought to be a key driver of prokaryote diversity. However, relatively little is known about how prokaryotes successfully transition and persist across environments, and how these processes might vary between biomes and lineages. Here, we investigate biome transitions and specialization in natural populations of a focal bacterial phylum, the Myxococcota, sampled across a range of replicated soils and freshwater and marine sediments in Cornwall (UK). By targeted deep sequencing of the protein-coding gene rpoB, we found >2,000 unique Myxococcota lineages, with the majority (77%) classified as biome specialists and with only <5% of lineages distributed across the salt barrier. Discrete character evolution models revealed that specialists in one biome rarely transitioned into specialists in another biome. Instead, evolved generalism mediated transitions between biome specialists. State-dependent diversification models found variation in speciation rates across the tree, but this variation was independent of biome association or specialization. Our findings were robust to phylogenetic uncertainty, different levels of species delineation, and different assumed amounts of unsampled diversity resulting in an incomplete phylogeny. Overall, our results are consistent with a "jack-of-all-trades" tradeoff where generalists suffer a cost in any individual environment, resulting in rapid evolution of niche specialists and shed light on how bacteria could transition between biomes.


Assuntos
Evolução Biológica , Myxococcales , Myxococcales/genética , Ecossistema , Filogenia , Especiação Genética
14.
Syst Biol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490727

RESUMO

Across the Tree of Life, most studies of phenotypic disparity and diversification have been restricted to adult organisms. However, many lineages have distinct ontogenetic phases that differ from their adult forms in morphology and ecology. Focusing disproportionately on the evolution of adult forms unnecessarily hinders our understanding of the pressures shaping evolution over time. Non-adult disparity patterns are particularly important to consider for coastal ray-finned fishes, which often have juvenile phases with distinct phenotypes. These juvenile forms are often associated with sheltered nursery environments, with phenotypic shifts between adults and juvenile stages that are readily apparent in locomotor morphology. Whether this ontogenetic variation in locomotor morphology reflects a decoupling of diversification dynamics between life stages remains unknown. Here we investigate the evolutionary dynamics of locomotor morphology between adult and juvenile triggerfishes. We integrate a time-calibrated phylogenetic framework with geometric morphometric approaches and measurement data of fin aspect ratio and incidence, and reveal a mismatch between morphospace occupancy, the evolution of morphological disparity, and the tempo of trait evolution between life stages. Collectively, our results illuminate how the heterogeneity of morpho-functional adaptations can decouple the mode and tempo of morphological diversification between ontogenetic stages.

15.
Syst Biol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934241

RESUMO

Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis paving the way for complex life. Studying the evolution and ecological niche of cyanobacteria and their ancestors is crucial for understanding the intricate dynamics of biosphere evolution. These organisms frequently deal with environmental stressors such as salinity and drought, and they employ compatible solutes as a mechanism to cope with these challenges. Compatible solutes are small molecules that help maintain cellular osmotic balance in high salinity environments, such as marine waters. Their production plays a crucial role in salt tolerance, which, in turn, influences habitat preference. Among the five known compatible solutes produced by cyanobacteria (sucrose, trehalose, glucosylglycerol, glucosylglycerate, and glycine betaine), their synthesis varies between individual strains. In this study, we work in a Bayesian stochastic mapping framework, integrating multiple sources of information about compatible solute biosynthesis in order to predict the ancestral habitat preference of Cyanobacteria. Through extensive model selection analyses and statistical tests for correlation, we identify glucosylglycerol and glucosylglycerate as the most significantly correlated with habitat preference, while trehalose exhibits the weakest correlation. Additionally, glucosylglycerol, glucosylglycerate, and glycine betaine show high loss/gain rate ratios, indicating their potential role in adaptability, while sucrose and trehalose are less likely to be lost due to their additional cellular functions. Contrary to previous findings, our analyses predict that the last common ancestor of Cyanobacteria (living at around 3180 Ma) had a 97% probability of a high salinity habitat preference and was likely able to synthesise glucosylglycerol and glucosylglycerate. Nevertheless, cyanobacteria likely colonized low-salinity environments shortly after their origin, with an 89% probability of the first cyanobacterium with low-salinity habitat preference arising prior to the Great Oxygenation Event (2460 Ma). Stochastic mapping analyses provide evidence of cyanobacteria inhabiting early marine habitats, aiding in the interpretation of the geological record. Our age estimate of ~2590 Ma for the divergence of two major cyanobacterial clades (Macro- and Microcyanobacteria) suggests that these were likely significant contributors to primary productivity in marine habitats in the lead-up to the Great Oxygenation Event, and thus played a pivotal role in triggering the sudden increase in atmospheric oxygen.

16.
Proc Natl Acad Sci U S A ; 119(18): e2102878119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471905

RESUMO

Safeguarding tropical forest biodiversity requires solutions for monitoring ecosystem structure over time. In the Amazon, logging and fire reduce forest carbon stocks and alter habitat, but the long-term consequences for wildlife remain unclear, especially for lesser-known taxa. Here, we combined multiday acoustic surveys, airborne lidar, and satellite time series covering logged and burned forests (n = 39) in the southern Brazilian Amazon to identify acoustic markers of forest degradation. Our findings contradict expectations from the Acoustic Niche Hypothesis that animal communities in more degraded habitats occupy fewer "acoustic niches" defined by time and frequency. Instead, we found that aboveground biomass was not a consistent proxy for acoustic biodiversity due to the divergent patterns of "acoustic space occupancy" between logged and burned forests. Ecosystem soundscapes highlighted a stark, and sustained reorganization in acoustic community assembly after multiple fires; animal communication networks were quieter, more homogenous, and less acoustically integrated in forests burned multiple times than in logged or once-burned forests. These findings demonstrate strong biodiversity cobenefits from protecting burned Amazon forests from recurrent fire. By contrast, soundscape changes after logging were subtle and more consistent with acoustic community recovery than reassembly. In both logged and burned forests, insects were the dominant acoustic markers of degradation, particularly during midday and nighttime hours, which are not typically sampled by traditional biodiversity field surveys. The acoustic fingerprints of degradation history were conserved across replicate recording locations, indicating that soundscapes may offer a robust, taxonomically inclusive solution for digitally tracking changes in acoustic community composition over time.


Assuntos
Ecossistema , Incêndios , Vocalização Animal , Acústica , Animais , Biodiversidade , Carbono , Florestas
17.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34983873

RESUMO

Bottom trawling is widespread globally and impacts seabed habitats. However, risks from trawling remain unquantified at large scales in most regions. We address these issues by synthesizing evidence on the impacts of different trawl-gear types, seabed recovery rates, and spatial distributions of trawling intensity in a quantitative indicator of biotic status (relative amount of pretrawling biota) for sedimentary habitats, where most bottom-trawling occurs, in 24 regions worldwide. Regional average status relative to an untrawled state (=1) was high (>0.9) in 15 regions, but <0.7 in three (European) regions and only 0.25 in the Adriatic Sea. Across all regions, 66% of seabed area was not trawled (status = 1), 1.5% was depleted (status = 0), and 93% had status > 0.8. These assessments are first order, based on parameters estimated with uncertainty from meta-analyses; we recommend regional analyses to refine parameters for local specificity. Nevertheless, our results are sufficiently robust to highlight regions needing more effective management to reduce exploitation and improve stock sustainability and seabed environmental status-while also showing seabed status was high (>0.95) in regions where catches of trawled fish stocks meet accepted benchmarks for sustainable exploitation, demonstrating that environmental benefits accrue from effective fisheries management. Furthermore, regional seabed status was related to the proportional area swept by trawling, enabling preliminary predictions of regional status when only the total amount of trawling is known. This research advances seascape-scale understanding of trawl impacts in regions around the world, enables quantitative assessment of sustainability risks, and facilitates implementation of an ecosystem approach to trawl fisheries management globally.


Assuntos
Biota , Ecossistema , Pesqueiros , Animais , Conservação dos Recursos Naturais , Peixes , Geografia , Sedimentos Geológicos , Júpiter , Oceanos e Mares , Dinâmica Populacional
18.
Proc Natl Acad Sci U S A ; 119(37): e2201503119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067285

RESUMO

Spatial dynamics have long been recognized as an important driver of biodiversity. However, our understanding of species' coexistence under realistic landscape configurations has been limited by lack of adequate analytical tools. To fill this gap, we develop a spatially explicit metacommunity model of multiple competing species and derive analytical criteria for their coexistence in fragmented heterogeneous landscapes. Specifically, we propose measures of niche and fitness differences for metacommunities, which clarify how spatial dynamics and habitat configuration interact with local competition to determine coexistence of species. We parameterize our model with a Bayesian approach using a 36-y time-series dataset of three Daphnia species in a rockpool metacommunity covering >500 patches. Our results illustrate the emergence of interspecific variation in extinction and recolonization processes, including their dependencies on habitat size and environmental temperature. We find that such interspecific variation contributes to the coexistence of Daphnia species by reducing fitness differences and increasing niche differences. Additionally, our parameterized model allows separating the effects of habitat destruction and temperature change on species extinction. By integrating coexistence theory and metacommunity theory, our study provides platforms to increase our understanding of species' coexistence in fragmented heterogeneous landscapes and the response of biodiversity to environmental changes.


Assuntos
Biodiversidade , Extinção Biológica , Modelos Biológicos , Teorema de Bayes , Dinâmica Populacional
19.
Proc Natl Acad Sci U S A ; 119(14): e2115608119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349333

RESUMO

SignificanceIn marine ecosystems, transmission of microbial symbionts between host generations occurs predominantly through the environment. Yet, it remains largely unknown how host genetics, symbiont competition, environmental conditions, and geography shape the composition of symbionts acquired by individual hosts. To address this question, we applied population genomic approaches to four species of deep-sea hydrothermal vent snails that live in association with chemosynthetic bacteria. Our analyses show that environment is more important to strain-level symbiont composition than host genetics and that symbiont strains show genetic variation indicative of adaptation to the distinct geochemical conditions at each vent site. This corroborates a long-standing hypothesis that hydrothermal vent invertebrates affiliate with locally adapted symbiont strains to cope with the variable conditions characterizing their habitats.


Assuntos
Fontes Hidrotermais , Bactérias/genética , Ecossistema , Fontes Hidrotermais/microbiologia , Metagenômica , Simbiose/genética
20.
BMC Biol ; 22(1): 145, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956546

RESUMO

BACKGROUND: Microbes in the cold polar and alpine environments play a critical role in feedbacks that amplify the effects of climate change. Defining the cold adapted ecotype is one of the prerequisites for understanding the response of polar and alpine microbes to climate change. RESULTS: Here, we analysed 85 high-quality, de-duplicated genomes of Deinococcus, which can survive in a variety of harsh environments. By leveraging genomic and phenotypic traits with reverse ecology, we defined a cold adapted clade from eight Deinococcus strains isolated from Arctic, Antarctic and high alpine environments. Genome-wide optimization in amino acid composition and regulation and signalling enable the cold adapted clade to produce CO2 from organic matter and boost the bioavailability of mineral nitrogen. CONCLUSIONS: Based primarily on in silico genomic analysis, we defined a potential cold adapted clade in Deinococcus and provided an updated view of the genomic traits and metabolic potential of Deinococcus. Our study would facilitate the understanding of microbial processes in the cold polar and alpine environments.


Assuntos
Temperatura Baixa , Deinococcus , Genoma Bacteriano , Genômica , Deinococcus/genética , Adaptação Fisiológica/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA