Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Ecol Lett ; 27(1): e14327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37819920

RESUMO

Studies of niche differentiation and biodiversity often focus on a few niche dimensions due to the methodological challenge of describing hyperdimensional niche space. However, this may limit our understanding of community assembly processes. We used the full spectrum of realized niche types to study arbuscular mycorrhizal fungal communities: distinguishing abiotic and biotic, and condition and resource, axes. Estimates of differentiation in relation to different niche types were only moderately correlated. However, coexisting taxon niches were consistently less differentiated than expected, based on a regional null model, indicating the importance of habitat filtering at that scale. Nonetheless, resource niches were relatively more differentiated than condition niches, which is consistent with the effect of a resource niche-based coexistence mechanism. Considering niche types, and in particular distinguishing resource and condition niches, provides a more complete understanding of community assembly, compared with studying individual niche axes or the full niche.


Assuntos
Ecossistema , Micorrizas , Biodiversidade
2.
Environ Res ; 258: 119433, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889838

RESUMO

The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Despite this situation, the responses of macrobenthos under hypoxic conditions remain poorly understood. In this study, we conducted a long-term observation (2015-2022) to investigate the intricate impact of summer hypoxia on macrobenthic communities in a semi-enclosed bay of the North Yellow Sea. Comparative analyses revealed higher macrobenthos abundance (1956.8 ± 1507.5 ind./m2 vs. 871.8 ± 636.9 ind./m2) and biomass (8.2 ± 4.1 g/m2 vs. 5.6 ± 3.2 g/m2) at hypoxic sites compared to normoxic sites during hypoxic years. Notably, polychaete species demonstrated remarkable adaptability, dominating hypoxic sites, and shaping community structure. The decline in biodiversity underscored the vulnerability and diminished resilience of macrobenthic communities to hypoxic stressors. Stable isotope analysis provided valuable insights into food web structures. The average trophic level of macrobenthos measured 2.84 ± 0.70 at hypoxic sites, contrasting with the higher value of 3.14 ± 0.74 observed at normoxic sites, indicating the absence of predators at high trophic levels under hypoxic conditions. Moreover, trophic interactions were significantly altered, resulting in a simplified and more vulnerable macrobenthic trophic structure. The findings underscored the importance of comprehensive research to understand the complex responses of macrobenthic communities to hypoxia, thereby informing future conservation efforts in impacted ecosystems.


Assuntos
Baías , Biodiversidade , Invertebrados , Estações do Ano , China , Animais , Monitoramento Ambiental , Cadeia Alimentar , Biomassa , Oxigênio/metabolismo , Oxigênio/análise
3.
Proc Biol Sci ; 290(2007): 20231290, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752835

RESUMO

Understanding how resource limitation and biotic interactions interact across spatial scales is fundamental to explaining the structure of ecological communities. However, empirical studies addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a highly tractable arboreal ant study system to explore the interactive effects of resource availability and competition on community structure across three local scales: an individual tree, the nest network created by each colony and the individual ant nest. On individual trees, the ant assemblages are primarily shaped by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained by the availability of nesting resources but also influenced by the co-occurring species. Within individual nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local ecological organization, transitioning to a stronger effect of species interactions at finer scales. Collectively, these results highlight that the process exerting the strongest influence on community structure is highly dependent on the scale at which we examine the community, with shifts occurring even across fine-grained local scales.


Assuntos
Formigas , Animais , Árvores , Madeira , Ecossistema
4.
Mol Ecol ; 32(23): 6110-6128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34775647

RESUMO

Disentangling the relative role of environmental filtering and spatial processes in driving metacommunity structure across mountainous regions remains challenging, as the way we quantify spatial connectivity in topographically and environmentally heterogeneous landscapes can influence our perception of which process predominates. More empirical data sets are required to account for taxon- and context-dependency, but relevant research in understudied areas is often compromised by the taxonomic impediment. Here we used haplotype-level community DNA metabarcoding, enabled by stringent filtering of amplicon sequence variants (ASVs), to characterize metacommunity structure of soil microarthropod assemblages across a mosaic of five forest habitats on the Troodos mountain range in Cyprus. We found similar ß diversity patterns at ASV and species (OTU, operational taxonomic unit) levels, which pointed to a primary role of habitat filtering resulting in the existence of largely distinct metacommunities linked to different forest types. Within-habitat turnover was correlated to topoclimatic heterogeneity, again emphasizing the role of environmental filtering. However, when integrating landscape matrix information for the highly fragmented Quercus alnifolia habitat, we also detected a major role of spatial isolation determined by patch connectivity, indicating that stochastic and niche-based processes synergistically govern community assembly. Alpha diversity patterns varied between ASV and OTU levels, with OTU richness decreasing with elevation and ASV richness following a longitudinal gradient, potentially reflecting a decline of genetic diversity eastwards due to historical pressures. Our study demonstrates the utility of haplotype-level community metabarcoding for characterizing metacommunity structure of complex assemblages and improving our understanding of biodiversity dynamics across mountainous landscapes worldwide.


Assuntos
Mariposas , Solo , Animais , Florestas , Ecossistema , Biodiversidade
5.
Ecol Appl ; 33(4): e2845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922403

RESUMO

Evaluating the effects of anthropogenic pressures on several biodiversity metrics can inform the management and monitoring of biodiversity loss. However, the type of disturbances can lead to different responses in different metrics. In this study, we aimed at disentangling the effects of different types of anthropogenic disturbances on freshwater fish communities. We calculated diversity indices for 1109 stream fish communities across France by computing richness and evenness components for ecological, morphological, and phylogenetic diversity, and used null models to estimate standardized effect sizes. We used generalized linear mixed models to assess the relative effects of environmental and anthropogenic drivers in driving those diversity indices. Our results demonstrated that all diversity indices exhibited significant responses to both climatic conditions and anthropogenic disturbances. While we observed a decrease of ecological and phylogenetic richness with the intensity of disturbance, a weak increase in morphological richness and evenness was apparent. Overall, our results demonstrated the importance of disentangling various types of disturbances when assessing human-induced ecological impacts and highlighted that different facets of diversity are not impacted identically by anthropogenic disturbances in stream fish communities. This calls for further work seeking to integrate biodiversity responses to human disturbances into a multifaceted framework, and could have beneficial implications when planning conservation action in freshwater ecosystems.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Filogenia , Água Doce , Rios , Peixes/fisiologia
6.
Ecol Appl ; 33(6): e2899, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37335271

RESUMO

A trait-based community assembly framework has great potential to direct ecological restoration, but uncertainty over how traits and environmental factors interact to influence community composition over time limits the widespread application of this approach. In this study, we examined how the composition of seed mixes and environment (north- vs. south-facing slope aspect) influence functional composition and native plant cover over time in restored grassland and shrubland communities. Variation in native cover over 4 years was primarily driven by species mix, slope aspect, and a species mix by year interaction rather than an interaction between species mix and slope aspect as predicted. Although native cover was higher on wetter, north-facing slopes for most of the study, south-facing slopes achieved a similar cover (65%-70%) by year 4. While community-weighted mean (CWM) values generally became more resource conservative over time, we found shifts in particular traits across community types and habitats. For example, CWM for specific leaf area increased over time in grassland mixes. Belowground, CWM for root mass fraction increased while CWM for specific root length decreased across all seed mixes. Multivariate functional dispersion remained high in shrub-containing mixes throughout the study, which could enhance invasion resistance and recovery following disturbance. Functional diversity and species richness were initially higher in drier, south-facing slopes compared to north-facing slopes, but these metrics were similar across north- and south-facing slopes by the end of the 4-year study. Our finding that different combinations of traits were favored in south- and north-facing slopes and over time demonstrates that trait-based approaches can be used to identify good restoration candidate species and, ultimately, enhance native plant cover across community types and microhabitat. Changing the composition of planting mixes based on traits could be a useful strategy for restoration practitioners to match species to specific environmental conditions and may be more informative than using seed mixes based on growth form, as species within functional groups can vary tremendously in leaf and root traits.


Assuntos
Ecossistema , Plantas , Sementes
7.
Am J Bot ; 109(5): 689-705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35435240

RESUMO

PREMISE: Digitized collections can help illuminate the mechanisms behind the establishment and spread of invasive plants. These databases provide a record of traits in space and time that allows for investigation of abiotic and biotic factors that influence invasive species. METHODS: Over 1100 digitized herbarium records were examined to investigate the invasion history and trait variation of Microstegium vimineum. Presence-absence of awns was investigated to quantify geographic patterns of this polymorphic trait, which serves several functions in grasses, including diaspore burial and dispersal to germination sites. Floret traits were further quantified, and genomic analyses of contemporary samples were conducted to investigate the history of M. vimineum's introduction and spread into North America. RESULTS: Herbarium records revealed similar patterns of awn polymorphism in native and invaded ranges of M. vimineum, with awned forms predominating at higher latitudes and awnless forms at lower latitudes. Herbarium records and genomic data suggested initial introduction and spread of the awnless form in the southeastern United States, followed by a putative secondary invasion and spread of the awned form from eastern Pennsylvania. Awned forms have longer florets, and floret size varies significantly with latitude. There is evidence of a transition zone with short-awned specimens at mid-latitudes. Genomic analyses revealed two distinct clusters corresponding to awnless and awned forms, with evidence of admixture. CONCLUSIONS: Our results demonstrate the power of herbarium data to elucidate the invasion history of a problematic weed in North America and, together with genomic data, reveal a possible key trait in introduction success: presence or absence of an awn.


Assuntos
Estruturas Vegetais , Poaceae , Germinação , Espécies Introduzidas , Fenótipo , Poaceae/genética
8.
J Fish Biol ; 100(2): 339-351, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33860934

RESUMO

Different species can associate or interact in many ways, and methods exist for inferring associations and underlying mechanisms from incidence data (e.g., co-occurrence frameworks). These methods have received criticism despite their recent resurgence in the literature. However, co-occurrence frameworks for identifying nonrandomly associated species pairs (e.g., aggregated or segregated pairs) have value as heuristic tools for sharpening hypotheses concerning fish ecology. This paper provides a case study examining species co-occurrence across 33 stream fish assemblages in southeastern Oklahoma, USA, which were sampled twice (1974 and 2014). This study sought to determine (a) which species were nonrandomly associated, (b) what processes might have driven these associations and (c) how consistent patterns were across time. Associations among most pairs of species (24 species, 276 unique pairs) were not significantly different from random (>80%). Among all significant, nonrandomly associated species pairs (54 unique pairs), 78% (42 pairs) were aggregated and 22% (12 pairs) segregated. Most of these (28 pairs, 52%) were hypothesized to be driven by nonbiotic mechanisms: habitat filtering (20 pairs, 37%), dispersal limitation (two pairs, 0.4%) or both (six pairs, 11%). The remaining 26 nonrandomly associated pairs (48%) had no detectable signal of spatial or environmental factors involved with the association, therefore the potential for biotic interaction was not refuted. Only five species pairs were consistently associated across both sampling periods: stonerollers Campostoma spp. and orangebelly darter Etheostoma radiosum; red shiner Cyprinella lutrensis and bullhead minnow Pimephales vigilax; bluegill sunfish Lepomis macrochirus and redear sunfish Lepomis microlophus; redfin shiner Lythrurus umbratilis and bluntnose minnow Pimephales notatus; and bigeye shiner Notropis boops and golden shiner Notemigonus crysoleucas. Frameworks for identifying nonrandomly associated species pairs can provide insight into broader mechanisms of species assembly and point to potentially interesting species interactions (out of many possible pairs). However, this approach is best applied as a tool for sharpening hypotheses to be investigated further. Rather than a weakness, the heuristic nature is the strength of such methods, and can help guide biologists toward better questions by employing relatively cheap diversity survey data, which are often already in hand, to reduce complex interaction networks down to their nonstochastic parts which warrant further investigation.


Assuntos
Cyprinidae , Perciformes , Animais , Ecossistema , Oklahoma , Rios
9.
Oecologia ; 197(2): 511-522, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34535833

RESUMO

Although functional and phylogenetic diversities are increasingly used in ecology for a variety of purposes, their relationship remains unclear, and this relationship likely differs among taxa, yet most recent studies focused on plants. We hypothesize that communities may be diverse in functional traits due to presence of: many phylogenetic lineages, trait divergence within lineages, many species and random functional variation among species, weak filtering of traits in favorable environments, or strong trait divergence in unfavorable environments. We tested these predictions for taxa showing higher (ants), or lower (spiders, ground beetles) degrees of competition and niche construction, both of which might decouple functional traits from phylogenetic position or from the environment. Studying > 11,000 individuals and 216 species from coastal heathlands, we estimated functional as minimum spanning trees using traits related to the morphology, feeding habits and dispersal, respectively. Relationships between functional and phylogenetic diversities were overall positive and strong. In ants, this relationship disappeared after accounting for taxonomic diversities and environments, whereas in beetles and spiders taxonomic diversity is related to functional diversity only via increasing phylogenetic diversity. Environmental constraints reduced functional diversity in ants, but affected functional diversity only indirectly via phylogenetic diversity (ground beetles) and taxonomic and then phylogenetic diversity (spiders and ground beetles). Results are consistent with phylogenetic conservatism in traits in spiders and ground beetles. In ants, in contrast, traits appear more phylogenetically neutral with any new species potentially representing a new trait state, tentatively suggesting that competition or niche construction might decouple phylogenetics from trait diversity.


Assuntos
Artrópodes , Besouros , Aranhas , Animais , Biodiversidade , Besouros/genética , Ecossistema , Humanos , Filogenia
10.
Proc Natl Acad Sci U S A ; 115(23): 6010-6015, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784785

RESUMO

Among the factors that may lead to differences in resource use among closely related species, body size and morphology have been traditionally considered to play a role in community assembly. Here we argue that for animals that live and forage in groups, level of sociality, reflecting differences in group size and cooperative tendencies, can be an additional and powerful dimension separating species in niche space. We compare 50+ communities of the social spider genus Anelosimus across the Americas against a null model that accounts for known effects of biotic and abiotic factors on the distribution of social systems in the genus. We show that these communities are more overdispersed than expected by chance in either or both body size and level of sociality, traits we have previously shown to be associated with differences in resource utilization (prey size, microhabitat, and phenology). We further show that the contribution of sociality to differences in the size of the prey captured is two to three times greater than that of body size, suggesting that changes in group size and cooperative tendencies may be more effective than changes in body size at separating species in niche space.


Assuntos
Comportamento Animal/fisiologia , Hierarquia Social , Comportamento Social , América , Animais , Tamanho Corporal , Comportamento Cooperativo , Ecossistema , Fenótipo , Comportamento Predatório/fisiologia , Aranhas
11.
Oecologia ; 193(3): 655-664, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32621030

RESUMO

Studies that test community assembly hypotheses in observational communities frequently evaluate patterns for plots or entire communities, yet studies that examine assembly patterns across spatial scales show that they are greatly influenced by scale. Here, we test the spatial dependency of patterns of relatedness and plant height for all individual herbaceous plants along five 40-m old-field transects (Southern Ontario, Canada). We identified each individual plant and measured its distance along the transect and its height, and we constructed a molecular phylogeny for all observed species. To uncover the scale at which community phylogenetic and trait similarities shift, we used partial Mantel correlograms and distance-based Moran Eigenvector Maps (dbMEMs). We found that communities shift from significantly overdispersed at relatively smaller scales (i.e., < 15 m) to spatially clustered at larger scales, showing that assembly mechanism influence depends on scale of observation. This pattern was observed for both phylogeny and height, but was the strongest when considering phylogeny only. These results reveal the importance of spatial scale when examining community phylogenetic or trait patterns, where finding support for one assembly mechanism at a single scale does not necessarily mean that other mechanisms are also not important for structuring community composition and diversity.


Assuntos
Ecossistema , Plantas , Biodiversidade , Ontário , Filogenia , Análise Espacial
12.
New Phytol ; 223(1): 462-474, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861145

RESUMO

Soil plant-pathogenic (PF) and mycorrhizal fungi (MF) are both important in maintaining plant diversity, for example via host-specialized effects. However, empirical knowledge on the degree of host specificity and possible factors affecting the fungal assemblages is lacking. We identified PF and MF in fine roots of 519 individuals across 45 subtropical tree species in southern China in order to quantify the importance of host phylogeny (including via its effects on functional traits), habitat and space in determining fungal communities. We also compared host specificity in PF and MF at different host-phylogenetic scales. In both PF and MF, host phylogeny independently accounted for > 19% of the variation in fungal richness and composition, whereas environmental and spatial factors each explained no more than 4% of the variation. Over 77% of the variation explained by phylogeny was attributable to covariation in plant functional traits. Host specificity was phylogenetically scale-dependent, being stronger in PF than in MF at low host-phylogenetic scales (e.g. within genus) but similar at larger scales. Our study suggests that host-phylogenetic effects dominate the assembly of both PF and MF communities, resulting from phylogenetically clustered plant traits. The scale-dependent host specificity implies that PF were specialized at lower-level and MF at higher-level host taxa.


Assuntos
Biodiversidade , Florestas , Especificidade de Hospedeiro , Micorrizas/fisiologia , Filogenia , Modelos Lineares , Fotossíntese , Especificidade da Espécie , Clima Tropical
13.
Oecologia ; 189(2): 501-513, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30701386

RESUMO

Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.


Assuntos
Formigas , Animais , Biodiversidade , Ecologia , Ecossistema , Florestas , Guiana Francesa
14.
Am J Bot ; 105(9): 1469-1476, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30098589

RESUMO

PREMISE OF THE STUDY: Habitat filtering and non-habitat processes are two major processes affecting spatial distributions of species. Because trees at different life stages perform differently, the life stage of tree species could play an important role in shaping the spatial distribution of species and community assembly. Here, we examined the possible changes of spatial distributions of species and evaluated the shifts in the relative importance of habitat filtering and non-habitat processes across life stages in a 50-ha subtropical forest plot in China. METHODS: We modeled species distribution with and without life stages using three point process models. The performance of these models, with and without considering life stages, was evaluated by comparing the species-area curve and the degree of clustering. The relative effects of habitat filtering and non-habitat processes across life stages were quantified using a spatial variance decomposition method. KEY RESULTS: The incorporation of life stage considerably improved the goodness-of-fit of these point process models at both the community and species levels. Non-habitat processes explained about 90% of the total variation in spatial distribution, while habitat filtering explained about 10%. The relative importance of habitat filtering only increased slightly from sapling to adult stages. CONCLUSIONS: Point process models performed better when life stages are included, indicating the importance of considering life stage when modeling spatial distributions for understanding community assembly. The finding that habitat acts weakly and non-habitat processes act dominantly in determining spatial distributions of species suggests a strong dependence of spatial patterns on non-habitat processes.


Assuntos
Ecossistema , Árvores , Biodiversidade , China , Demografia , Distribuição de Poisson , Árvores/crescimento & desenvolvimento
15.
J Plant Res ; 131(6): 987-999, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30046937

RESUMO

The values of many plant traits are often different even within a species as a result of local adaptation. Here, we studied how multiple climate variables influence trait values in Arabidopsis thaliana grown under common conditions. We examined 9 climate variables and 29 traits related to vegetative growth rate in 44 global A. thaliana accessions grown at ambient or elevated CO2 concentration ([CO2]) and applied a multiple regression analysis. We found that genetic variations in the traits related to growth rates were associated with various climate variables. At ambient [CO2], plant size was positively correlated with precipitation in the original habitat. This may be a result of larger biomass investment in roots at the initial stage in plants adapting to a lower precipitation. Stomatal conductance and photosynthetic nitrogen use efficiency were negatively correlated with vapor pressure deficit, probably as a result of the trade-off between photosynthetic water- and nitrogen-use efficiency. These results suggest that precipitation and air humidity influence belowground and aboveground traits, respectively. Elevated [CO2] altered climate dependences in some of the studied traits. The CO2 response of relative growth rate was negatively correlated with altitude, indicating that plants inhabiting a higher altitude have less plasticity to changing [CO2]. These results are useful not only for understanding evolutionary process but also to predict the plant species that are favored under future global change.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Adaptação Fisiológica , Altitude , Arabidopsis/fisiologia , Clima , Mudança Climática , Ecossistema , Umidade , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal
16.
BMC Biol ; 15(1): 127, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29282061

RESUMO

The trillions of microbes living in the gut-the gut microbiota-play an important role in human biology and disease. While much has been done to explore its diversity, a full understanding of our microbiomes demands an evolutionary perspective. In this review, we compare microbiomes from human populations, placing them in the context of microbes from humanity's near and distant animal relatives. We discuss potential mechanisms to generate host-specific microbiome configurations and the consequences of disrupting those configurations. Finally, we propose that this broader phylogenetic perspective is useful for understanding the mechanisms underlying human-microbiome interactions.


Assuntos
Evolução Biológica , Microbiota/fisiologia , Animais , Microbioma Gastrointestinal/fisiologia , Especificidade de Hospedeiro , Humanos , Filogenia
17.
Ecol Lett ; 20(4): 495-504, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28294532

RESUMO

Remote locations, such as oceanic islands, typically harbour relatively few species, some of which go on to generate endemic radiations. Species colonising these locations tend to be a non-random subset from source communities, which is thought to reflect dispersal limitation. However, non-random colonisation could also result from habitat filtering, whereby only a few continental species can become established. We evaluate the imprints of these processes on the Galápagos flora by analysing a comprehensive regional phylogeny for ~ 39 000 species alongside information on dispersal strategies and climatic suitability. We found that habitat filtering was more important than dispersal limitation in determining species composition. This finding may help explain why adaptive radiation is common on oceanic archipelagoes - because colonising species can be relatively poor dispersers with specific niche requirements. We suggest that the standard assumption that plant communities in remote locations are primarily shaped by dispersal limitation deserves reconsideration.


Assuntos
Ecossistema , Dispersão Vegetal , Plantas , Biota , Equador , Ilhas , Filogenia
18.
Ecol Lett ; 20(7): 872-882, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28510261

RESUMO

Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.


Assuntos
Biodiversidade , Plantas , Sementes
19.
New Phytol ; 213(3): 1418-1427, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27739593

RESUMO

In general, plants and arbuscular mycorrhizal (AM) fungi exchange photosynthetically fixed carbon for soil nutrients, but occasionally nonphotosynthetic plants obtain carbon from AM fungi. The interactions of these mycoheterotrophic plants with AM fungi are suggested to be more specialized than those of green plants, although direct comparisons are lacking. We investigated the mycorrhizal interactions of both green and mycoheterotrophic plants. We used next-generation DNA sequencing to compare the AM communities from roots of five closely related mycoheterotrophic species of Thismia (Thismiaceae), roots of surrounding green plants, and soil, sampled over the entire temperate distribution of Thismia in Australia and New Zealand. We observed that the fungal communities of mycoheterotrophic and green plants are phylogenetically more similar within than between these groups of plants, suggesting a specific association pattern according to plant trophic mode. Moreover, mycoheterotrophic plants follow a more restricted association with their fungal partners in terms of phylogenetic diversity when compared with green plants, targeting more clustered lineages of fungi, independent of geographic origin. Our findings demonstrate that these mycoheterotrophic plants target more narrow lineages of fungi than green plants, despite the larger fungal pool available in the soil, and thus they are more specialized towards mycorrhizal fungi than autotrophic plants.


Assuntos
Processos Autotróficos , Fungos/fisiologia , Micorrizas/fisiologia , Orchidaceae/microbiologia , Sequência de Bases , Funções Verossimilhança , Filogenia , Solo , Especificidade da Espécie
20.
Ann Bot ; 119(4): 659-670, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087661

RESUMO

Background and Aims: Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods: Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results: The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions: Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated.


Assuntos
Ecossistema , Plantas , Roedores , Animais , Biodiversidade , Clima Desértico , Espécies Introduzidas , Filogenia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA