Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769271

RESUMO

Cisplatin-induced ototoxicity leads to hearing impairment, possibly through reactive oxygen species (ROS) production and DNA damage in cochlear hair cells (HC), although the exact mechanism is unknown. Avenanthramide-C (AVN-C), a natural, potent antioxidant, was evaluated in three study groups of normal adult C57Bl/6 mice (control, cisplatin, and AVN-C+cisplatin) for the prevention of cisplatin-induced hearing loss. Auditory brainstem responses and immunohistochemistry of outer hair cells (OHCs) were ascertained. Cell survival, ROS production, Phospho-H2AX-enabled tracking of DNA damage-repair kinetics, and expression levels of inflammatory cytokines (TNF-α, IL-1ß, IL6, iNOS, and COX2) were assessed using House Ear Institute-Organ of Corti 1 (HEI-OC1 Cells). In the in vivo mouse model, following cisplatin-induced damage, AVN-C decreased the hearing thresholds and sheltered all cochlear turns' OHCs. In HEI-OC1 cells, AVN-C preserved cell viability and decreased ROS production, whereas cisplatin enhanced both ROS levels and cell viability. In HEI-OC1 cells, AVN-C downregulated IL6, IL-1ß, TNF-α, iNOS, and COX2 production that was upregulated by cisplatin treatment. AVN-C attenuated the cisplatin-enhanced nuclear H2AX activation. AVN-C had a strong protective effect against cisplatin-induced ototoxicity through inhibition of ROS and inflammatory cytokine production and DNA damage and is thus a promising candidate for preventing cisplatin-induced sensorineural hearing loss.


Assuntos
Antineoplásicos , Perda Auditiva , Ototoxicidade , Camundongos , Animais , Cisplatino/toxicidade , Cisplatino/metabolismo , Citocinas/metabolismo , Antineoplásicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular , Apoptose , Células Ciliadas Auditivas/metabolismo , Estresse Oxidativo , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Perda Auditiva/metabolismo , Dano ao DNA
2.
J Cell Mol Med ; 24(16): 9101-9113, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008309

RESUMO

Noise-induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain-of-function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down-regulated ROR1, Wnt5a and NF-κB p65. The up-regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro-apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti-apoptotic gene (Bcl-2) and the fluorescence intensity of cleaved-caspase-3. ROR1 interacted with Wnt5a to activate the NF-κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a-dependent NF-κB signalling pathway.


Assuntos
Células Ciliadas Auditivas/patologia , Perda Auditiva/prevenção & controle , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Animais , Apoptose/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Expressão Ectópica do Gene , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Cobaias , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/etiologia , Perda Auditiva/patologia , Masculino , NF-kappa B/metabolismo , Ruído/efeitos adversos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteína Wnt-5a/metabolismo
3.
Biol Pharm Bull ; 42(1): 73-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606991

RESUMO

It is well-known that outer hair cell (OHC) loss occurs in the cochlea of animal models of permanent hearing loss induced by intense noise exposure. Our earlier studies demonstrated the production of hydroxynonenal and peroxynitrite, as well as the disruption of gap junction-mediated intercellular communication (GJIC), in the cochlear spiral ligament prior to noise-induced sudden hearing loss. The goal of the present study was to evaluate the mechanism underlying cochlear OHC loss after sudden hearing loss induced by intense noise exposure. In organ of Corti explant cultures from mice, no significant OHC loss was observed after in vitro exposure to 4-hydroxynonenal (a product of lipid peroxidation), H2O2, SIN-1 (peroxynitrite generator), and carbenoxolone (a gap junction inhibitor). Interestingly, in vivo intracochlear carbenoxolone injection through the posterior semicircular canal caused marked OHC and hearing loss, as well as the disruption of gap junction-mediated intercellular communication in the cochlear spiral ligament. However, no significant OHC loss was observed in vivo in animals treated with 4-hydroxynonenal and SIN-1. Taken together, our data suggest that disruption of GJIC in the cochlear lateral wall structures is an important cause of cochlear OHC loss in models of hearing loss, including those induced by noise.


Assuntos
Estimulação Acústica/efeitos adversos , Comunicação Celular/fisiologia , Junções Comunicantes/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Ligamento Espiral da Cóclea/metabolismo , Aldeídos/toxicidade , Animais , Comunicação Celular/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Junções Comunicantes/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/induzido quimicamente , Perda Auditiva Provocada por Ruído/etiologia , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Ligamento Espiral da Cóclea/efeitos dos fármacos
4.
FASEB J ; 29(2): 418-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384423

RESUMO

Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.


Assuntos
Cóclea/fisiopatologia , Deficiência de Ácido Fólico/fisiopatologia , Perda Auditiva/fisiopatologia , Homocisteína/metabolismo , Hiper-Homocisteinemia/fisiopatologia , Estresse Oxidativo , Animais , Apoptose , Betaína-Homocisteína S-Metiltransferase/genética , Catalase/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Ácido Fólico/sangue , Deficiência de Ácido Fólico/complicações , Glutationa Peroxidase/metabolismo , Glutationa Sintase/metabolismo , Células Ciliadas Auditivas/citologia , Perda Auditiva/etiologia , Homocisteína/deficiência , Hiper-Homocisteinemia/complicações , Marcação In Situ das Extremidades Cortadas , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
5.
J Morphol ; 284(11): e21654, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856275

RESUMO

The neuromast is a sensory structure of the lateral line system in aquatic vertebrates, which consists of hair cells and supporting cells. Hair cells are mechanosensory cells, generally arranged with bidirectional polarity. Here, we describe a neuromast with hair cells arranged radially instead of bidirectionally in the first cranial neuromast of four teleost species: red seabream (Pagrus major), spotted halibut (Verasper variegatus), brown sole (Pseudopleuronectes herzensteini), and marbled sole (Pseudopleuronectes yokohamae). In these four species, this polarity was identified only in the first cranial neuromast, where it appeared at the rostral edge of the otic vesicle before hatching. We investigated the initial appearance and fate of this unique neuromast using scanning electron microscopy. We also assessed characteristics of radial neuromast pertaining to morphogenesis, development, and innervation using a vital fluorescent marker and immunohistochemistry in V. variegatus. The kinocilium initially appears at the center of each hair cell, then moves to its outer perimeter to form radial polarity by around 7 days postfertilization. However, hair cells arranged radially disappear about 15 days after hatching. This is followed by the appearance of bidirectionally arranged hair cells, indicating that polarity replacement from radial to bidirectional has occurred. In P. herzensteini, both afferent and efferent synapses between the nerve fibers and hair cells were observed by transmission electron microscopy, suggesting that radial neuromast is functional. Our discovery suggests that neuromasts with radial polarity could enable larval fish to assimilate multiaxial stimuli during this life stage, potentially assisting them in detecting small water vibrations or water pressure changes.


Assuntos
Sistema da Linha Lateral , Mecanorreceptores , Animais , Peixes , Crânio , Microscopia Eletrônica de Varredura , Água , Peixe-Zebra
6.
J Neurosci Methods ; 372: 109527, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182603

RESUMO

BACKGROUND: Hearing impairment is a growing social and economic issue. New technical or biological approaches aiming hearing rehabilitation or regeneration require animal testing. Therefore, a reproducible and safe model for hearing-impaired animals is essential. NEW METHOD: Intratympanic injection of kanamycin and furosemide was administered for BFA bunt pigmented guinea pigs for either 1 or 2 h. Hearing loss was regularly measured with compound action potential response to click and tone burst stimuli for up to 26 weeks. Hair cell loss and the density of spiral ganglion neurons were histologically analyzed. RESULTS: One week after the exposure, complete hearing loss was observed in 34 ears from the 36 ears treated for 2 h and remained stable during the follow-up. Histology revealed near complete hair cell loss and secondary degeneration of spiral ganglion neurons. COMPARISON WITH EXISTING METHODS: Animal deafening is usually achieved by systemic application of aminoglycoside antibiotics or chemotherapy drugs, although side effects such as nephrotoxicity may occur which can be avoided by local application. With our procedure, unilateral hearing loss model can also be established. CONCLUSIONS: The single intratympanic application of a solution of 200 mg/ml kanamycin and 50 mg/ml furosemide is a stable and reliable deafening method.


Assuntos
Surdez , Furosemida , Canamicina , Animais , Cóclea , Surdez/induzido quimicamente , Furosemida/efeitos adversos , Cobaias , Células Ciliadas Auditivas/patologia , Canamicina/efeitos adversos , Gânglio Espiral da Cóclea
7.
J Assoc Res Otolaryngol ; 23(5): 593-602, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902434

RESUMO

The relationship between the middle ear acoustic reflex (AR) and inner hair cell (IHC) loss is currently unknown. Given that IHC are believed to convey nearly all acoustic information to the central auditory nervous system, it has been assumed that loss of IHC would significantly impact the AR. To evaluate this relationship, we assessed the presence and amplitude of the AR in chinchillas before and after treatment with carboplatin, an anticancer drug that reliably and selectively destroys IHC in this species. Baseline measures of hearing sensitivity, including auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAE), were assessed and then re-evaluated following carboplatin treatment. Post-carboplatin ABR thresholds and DPOAE were found to be unchanged or slightly elevated; results were consistent with published reports. Our main hypothesis was that loss of IHC would abolish the reflex or significantly reduce its amplitude. Contrary to our hypothesis, the ipsilateral 226-Hz AR continued to be reliably elicited following carboplatin treatment. Post-mortem histological analysis confirmed significant IHC loss (65-85 %), but no measurable loss of outer hair cells (OHCs). Given that loss of IHC alone does not significantly reduce the 226-Hz AR, our results suggest that few IHC are needed to maintain the 226-Hz AR response. These results suggest additional studies are needed to better understand the role of IHC in the reflex arc, present opportunities to further study the reflex pathway, and could change how we use the clinical AR as a potential diagnostic tool for IHC dysfunction, including those related to IHC synaptopathy.


Assuntos
Células Ciliadas Auditivas Internas , Reflexo Acústico , Animais , Células Ciliadas Auditivas Internas/fisiologia , Carboplatina , Chinchila , Células Ciliadas Auditivas Externas/fisiologia , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia
8.
Animals (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049802

RESUMO

Congenital hearing loss is recognized in humans and other terrestrial species. However, there is a lack of information on its prevalence or pathophysiology in pinnipeds. It is important to have baseline knowledge on marine mammal malformations in the inner ear, to differentiate between congenital and acquired abnormalities, which may be caused by infectious pathogens, age, or anthropogenic interactions, such as noise exposure. Ultrastructural evaluation of the cochlea of a neonate harbor seal (Phoca vitulina) by scanning electron microscopy revealed bilateral loss of inner hair cells with intact outer hair cells. The selective inner hair cell loss was more severe in the basal turn, where high-frequency sounds are encoded. The loss of inner hair cells started around 40% away from the apex or tip of the spiral, reaching a maximum loss of 84.6% of hair cells at 80-85% of the length from the apex. Potential etiologies and consequences are discussed. This is believed to be the first case report of selective inner hair cell loss in a marine mammal neonate, likely congenital.

9.
J Assoc Res Otolaryngol ; 23(3): 379-389, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378622

RESUMO

Integration of acoustic information over time is essential for processing complex stimuli, such as speech, due to its continuous variability along the time domain. In both humans and animals, perception of acoustic stimuli is a function of both stimulus intensity and duration. For brief acoustic stimuli, as duration increases, thresholds decrease by approximately 3 dB for every doubling in duration until stimulus duration reaches 500 ms, a phenomenon known as temporal integration. Although hearing loss and damage to outer hair cells (OHC) have been shown to alter temporal integration in some studies, the role of cochlear inner hair cells (IHC) on temporal integration is unknown. Because IHC transmit nearly all acoustic information to the central auditory system and are believed to code both intensity and timing information, these sensory cells likely play a critical role in temporal integration. To test the hypothesis that selective IHC loss degrades the temporal integration function, behaviorally trained chinchillas were treated with carboplatin, a drug known to selectively destroy IHC with little to no effect on OHC in this species. Pure-tone thresholds were assessed across frequencies (1, 2, 4, 8, 12 kHz) as a function of signal duration (500, 100, 50, 10, and 5 ms). Baseline testing showed a significant effect of duration on thresholds. Threshold decreased as a function of increasing duration, as expected. Carboplatin treatment (75 mg/kg) produced a moderate to severe loss of IHC (45-85%) with little-to-no loss of OHC. Contrary to our hypothesis, post-carboplatin temporal integration thresholds showed no significant differences from baseline regardless of stimulus duration or frequency. These data suggest that few IHC are necessary for temporal integration of simple stimuli. Temporal integration may be sensitive to loss of OHC and loss of cochlear non-linearities but does not appear to be sensitive to selective IHC loss.


Assuntos
Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Animais , Limiar Auditivo , Carboplatina/toxicidade , Chinchila , Cóclea
10.
Front Cell Neurosci ; 15: 721950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489643

RESUMO

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.

11.
Biology (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681163

RESUMO

This work simulates the consequences of HIREC using stone sculpins as model organisms. Sex-dependent effects of long-term noise exposure at mean sound pressure levels of 160-179 dB re 1 µPa (SPLpk-pk) were measured. We applied a multilevel approach to testing the stress response: a comparative analysis of the macula sacculi and an assessment of hematological and molecular stress responses. Noise exposure resulted in hair cell loss, changes in some cytometric parameters in blood, and an increase in the number of functionally active mitochondria in the red blood cells of males and its decrease in females, demonstrating a mitochondrial allostatic load and depletion of functional reserve. Finally, a statistically significant decrease in the telomerase activity of the auditory epithelium and a shortening of telomere length in the brain as molecular markers of stress were observed after noise exposure only in females. No significant decrease in telomerase activity and shortening of telomere length in nerve target tissues were observed in stressed males. However, we recorded an increase in the telomerase activity in male gonads. This sex-dependent difference in load may be associated with accelerated cellular aging in females and lower stress-related long-term risk in males. In this article, we discuss possible reasons for these noise-induced stress effects.

12.
Laryngoscope ; 130(2): 487-495, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30963586

RESUMO

OBJECTIVES/HYPOTHESIS: Histopathological analysis of hair cell survival in human temporal bone sections has historically been binarized such that each hair cell row is rated as either present or absent, thereby greatly underestimating the amount of hair cell loss. Here, we describe and validate a technique to reliably assess fractional hair cell survival in archival sections stained with hematoxylin and eosin (H&E) using high-resolution light microscopy and optical sectioning. STUDY DESIGN: Technique validation. METHODS: Hair cell counts in archival temporal bone slide sets were performed by several observers using either differential interference contrast (DIC) or confocal microscopy of the endogenous eosin fluorescence in hair cells. As a further cross-check, additional decelloidinized sections were immunostained with hair cell markers myosin VI and VIIa. RESULTS: Cuticular plates and stereocilia bundles are routinely resolvable in DIC imaging of archival H&E-stained human material using standard research-grade microscopes, allowing highly accurate counts of fractional hair cell survival that are reproducible across observer and can be verified by confocal microscopy. CONCLUSIONS: Reanalysis of cases from the classic temporal bone literature on presbycusis suggests that, contrary to prior reports, differences in audiometric patterns may be well explained by the patterns of hair cell loss. LEVEL OF EVIDENCE: NA Laryngoscope, 130:487-495, 2020.


Assuntos
Células Ciliadas Auditivas/patologia , Presbiacusia/patologia , Osso Temporal/patologia , Cadáver , Sobrevivência Celular , Humanos , Microscopia Confocal , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA , Reprodutibilidade dos Testes , Coloração e Rotulagem
13.
Hear Res ; 388: 107880, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31945692

RESUMO

Oxidative stress is a major contributor to noise-induced hearing loss, the most common cause of hearing loss among military personnel and young adults. HK-2 is a potent, orally-active, multifunctional, redox-modulating drug that has been shown to protect against a wide range of neurological disorders with no observed side effects. HK-2 protected cochlear HEI-OC1 cells against various forms of experimentally-induced oxidative stressors similar to those observed during and after intense noise exposure. The mechanisms by which HK-2 protects cells is twofold, first by its ability to reduce oxidative stress generated by free radicals, and second, by its ability to complex biologically active transition metals such as Fe+2, thus reducing their availability to participate in the Fenton reaction where highly toxic hydroxyl radicals are generated. For the rat in vivo studies, HK-2 provided significant protection against noise-induced hearing loss and hair cell loss. Noise-induced hearing loss was induced by an 8-16 kHz octave band noises presented for 8 h/d for 21 days at an intensity of 95 dB SPL. In the Prevention study, HK-2 was administered orally beginning 5 days before the start of the noise and ending 10 days after the noise. Treatment with HK-2 dose-dependently reduced the amount of noise-induced hearing impairment, reflected in the cochlear compound action potential, and noise-induced hair cell loss. In a subsequent Rescue experiment in which HK-2 was administered for 10 days starting after the noise was turned off, HK-2 also significantly reduced the amount of hearing impairment, but the effect size was substantially less than in the Prevention studies. HK-2 alone did not adversely affect HEI-OC1 cell viability, nor did it cause any adverse changes in rat body weight, behavior, cochlear function or hair cell integrity. Thus, HK-2 is a novel, safe, orally-deliverable and highly effective otoprotective compound with considerable potential for preventing hearing loss from noise and other hearing disorders linked to excessive oxidative stress.


Assuntos
Antioxidantes/administração & dosagem , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/prevenção & controle , Audição/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/fisiopatologia , Ratos Sprague-Dawley , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
J Assoc Res Otolaryngol ; 21(6): 475-483, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32804336

RESUMO

Temporal resolution is essential for processing complex auditory information such as speech. In hearing impaired persons, temporal resolution, often assessed by detection of brief gaps in continuous sound stimuli, is typically poorer than in individuals with normal hearing. At low stimulus presentation levels, hearing impaired individuals perform poorly but the deficits are greatly reduced when the sensation level of the stimuli are adjusted to match their normal hearing peers. In the present study, we evaluated the effect of selective inner hair cell loss on gap detection in chinchillas treated with carboplatin, an anticancer drug that selectively damages inner hair cells and afferents in this species. Treatment with carboplatin-induced inner hair cell loss of ~ 70 % but had little effect on audiometric thresholds in quiet and produced no evidence of outer hair cell loss. In contrast, selective inner hair cell loss had a significant effect on gap detection ability across a wide range of presentation levels. These results suggest that gap detection tasks are more sensitive to inner hair cell pathology than audiometric thresholds.


Assuntos
Antineoplásicos/efeitos adversos , Percepção Auditiva/efeitos dos fármacos , Carboplatina/efeitos adversos , Perda Auditiva/induzido quimicamente , Audição/efeitos dos fármacos , Animais , Chinchila , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Masculino
15.
Front Cell Dev Biol ; 8: 576654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015071

RESUMO

Hair cells (HCs) play crucial roles in perceiving sound, acceleration, and fluid motion. The tonotopic architecture of the sensory epithelium recognizes mechanical stimuli and convert them into electrical signals. The expression and regulation of the genes in the inner ear is very important to keep the sensory organ functional. Our study is the first to investigate the role of the epigenetic reader Brd4 in the mouse inner ear. We demonstrate that HC specific deletion of Brd4 in vivo in the mouse inner ear is sufficient to cause profound hearing loss (HL), degeneration of stereocilia, nerve fibers and HC loss postnatally in mouse; suggesting an important role in hearing function and maintenance.

16.
Front Cell Neurosci ; 13: 406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551715

RESUMO

Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.

17.
J Assoc Res Otolaryngol ; 20(3): 217-232, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30710318

RESUMO

Posttranslational modification of histones alters their interaction with DNA and nuclear proteins, influencing gene expression and cell fate. In this study, we investigated the effect of G9a (KMT1C, EHMT2), a major histone lysine methyltransferase encoded by the human EHMT2 gene and responsible for histone H3 lysine 9 dimethylation (H3K9me2) on noise-induced permanent hearing loss (NIHL) in adult CBA/J mice. The conditions of noise exposure used in this study led to losses of cochlear synapses and outer hair cells (OHCs) and permanent auditory threshold shifts. Inhibition of G9a with its specific inhibitor BIX 01294 or with siRNA significantly attenuated these pathological features. Treatment with BIX 01294 also prevented the noise-induced decrease of KCNQ4 immunolabeling in OHCs. Additionally, G9a was increased in cochlear cells, including both outer and inner sensory hair cells, some spiral ganglion neurons (SGNs), and marginal cells, 1 h after the completion of the noise exposure. Also subsequent to noise exposure, immunoreactivity for H3K9me2 appeared in some nuclei of OHCs following a high-to-low frequency gradient with more labeled OHCs in the 45-kHz than the 32-kHz region, as well as in the marginal cells and in some SGNs of the basal turn. These findings suggest that epigenetic modifications of H3K9me2 are involved in NIHL and that pharmacological targeting of G9a may offer a strategy for protection against cochlear synaptopathy and NIHL.


Assuntos
Azepinas/uso terapêutico , Perda Auditiva Provocada por Ruído/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Quinazolinas/uso terapêutico , Células 3T3 , Animais , Limiar Auditivo/efeitos dos fármacos , Azepinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/prevenção & controle , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Canais de Potássio KCNQ/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Quinazolinas/farmacologia
18.
Hear Res ; 368: 92-108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006113

RESUMO

The hybrid or electric-acoustic stimulation cochlear implant is indicated in patients with a residual hearing at low frequencies. It provides electric and acoustic stimulation for compensating for high- and low-frequency sounds, respectively. However, the implantation procedure damages the cochlea, resulting in loss of the residual-hearing and diminished effects of the acoustic-hearing in several patients. To prevent hearing loss after implantation, corticosteroids have been used clinically although their effects are limited. As an alternative to corticosteroids, insulin-like growth factor 1 (IGF1) has shown potent effects in various types of cochlear injury. In this study, the effects of IGF1 on hearing preservation were examined after cochlear implantation to a normal-hearing guinea pig model. The electrode was inserted in an atraumatic way through the round window membrane of guinea pigs with the application of a gelatin-sponge soaked with IGF1 or saline. The auditory brainstem response (ABR) was recorded pre-operatively, immediately after cochlear implantation, and 7, 14, 28, and 56 days after electrode insertion. In comparison to the control group, the IGF1-treated group showed better hearing preservation at low frequencies, 7 days after surgery. IGF1 application was effective at low frequencies (2 and 4 kHz) throughout the period of examination. Histological studies revealed that outer hair cell numbers, in the IGF1-treated group, were maintained in the cochlear region responsible for low-frequency hearing (upper midbasal turn) and that there was less fibrous tissue formation around the electrode. Both the outer hair cell counts and the extent of fibrosis significantly correlated with the ABR threshold shifts at low frequencies. These results indicate that IGF1 might attenuate loss of low-frequency hearing after cochlear implantation, suggesting its possible clinical use in soft surgeries involving cochlear implants with electric-acoustic stimulation for hearing preservation.


Assuntos
Cóclea/efeitos dos fármacos , Implante Coclear/instrumentação , Implantes Cocleares , Audição/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Animais , Fadiga Auditiva/efeitos dos fármacos , Cóclea/lesões , Cóclea/patologia , Cóclea/fisiopatologia , Implante Coclear/efeitos adversos , Portadores de Fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Fibrose , Gelatina/química , Cobaias , Masculino , Modelos Animais , Tampões de Gaze Cirúrgicos , Fatores de Tempo
19.
J Tissue Eng Regen Med ; 11(9): 2629-2642, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27099197

RESUMO

The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-ß inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Células Ciliadas Auditivas Internas , Células-Tronco Embrionárias Murinas/metabolismo , Transplante de Células-Tronco , Animais , Técnicas de Cultura de Células , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/transplante , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia
20.
Hear Res ; 339: 32-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260269

RESUMO

OBJECTIVE: The trauma caused during cochlear implant insertion can lead to cell death and a loss of residual hair cells in the cochlea. Various therapeutic approaches have been studied to prevent cochlear implant-induced residual hearing loss with limited success. In the present study, we show the efficacy of mild to moderate therapeutic hypothermia of 4 to 6 °C applied to the cochlea in reducing residual hearing loss associated with the electrode insertion trauma. APPROACH: Rats were randomly distributed in three groups: control contralateral cochleae, normothermic implanted cochleae and hypothermic implanted cochleae. Localized hypothermia was delivered to the middle turn of the cochlea for 20 min before and after implantation using a custom-designed probe perfused with cooled fluorocarbon. Auditory brainstem responses (ABRs) were recorded to assess the hearing function prior to and post-cochlear implantation at various time points up to 30 days. At the conclusion of the trials, inner ears were harvested for histology and cell count. The approach was extended to cadaver temporal bones to study the potential surgical approach and efficacy of our device. In this case, the hypothermia probe was placed next to the round window niche via the facial recess or a myringotomy. MAIN RESULTS: A significant loss of residual hearing was observed in the normothermic implant group. Comparatively, the residual hearing in the cochleae receiving therapeutic hypothermia was significantly conserved. Histology confirmed a significant loss of outer hair cells in normothermic cochleae receiving the surgical trauma when compared to the hypothermia treated group. In human temporal bones, a controlled and effective cooling of the cochlea was achieved using our approach. SIGNIFICANCE: Collectively, these results suggest that therapeutic hypothermia during cochlear implantation may reduce traumatic effects of electrode insertion and improve conservation of residual hearing.


Assuntos
Cóclea/fisiopatologia , Implante Coclear/instrumentação , Implantes Cocleares/efeitos adversos , Perda Auditiva/fisiopatologia , Audição , Hipotermia Induzida/métodos , Animais , Audiometria de Tons Puros , Limiar Auditivo , Cóclea/fisiologia , Orelha Interna/fisiopatologia , Eletrodos , Eletrodos Implantados/efeitos adversos , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Ratos , Ratos Endogâmicos BN , Janela da Cóclea/cirurgia , Osso Temporal/patologia , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA