Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(21): e202302184, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866612

RESUMO

Mixed-halide perovskites are considered the most straightforward candidate to realize blue perovskite light-emitting diodes (PeLEDs). However, they suffer severe halide migration, leading to spectral instability, which is particularly exaggerated in high chloride alloying perovskites. Here, we demonstrate energy barrier of halide migration can be tuned by manipulating the degree of local lattice distortion (LLD). Enlarging the LLD degree to a suitable level can increase the halide migration energy barrier. We herein report an "A-site" cation engineering to tune the LLD degree to an optimal level. DFT simulation and experimental data confirm that LLD manipulation suppresses the halide migration in perovskites. Conclusively, mixed-halide blue PeLEDs with a champion EQE of 14.2 % at 475 nm have been achieved. Moreover, the devices exhibit excellent operational spectral stability (T50 of 72 min), representing one of the most efficient and stable pure-blue PeLEDs reported yet.

2.
Nano Lett ; 17(11): 6863-6869, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28968126

RESUMO

One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (VOC) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned VOC from 1.05 to 1.45 V in solar cells.

3.
Adv Mater ; 36(25): e2400852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579292

RESUMO

Despite rapid advancements in the photovoltaic efficiencies of perovskite solar cells (PSCs), their operational stability remains a significant challenge for commercialization. This instability mainly arises from light-induced halide ion migration and subsequent oxidation into iodine (I2). The situation is exacerbated when considering the heat effects at elevated temperatures, leading to the volatilization of I2 and resulting in irreversible device degradation. Mercaptoethylammonium iodide (ESAI) is thus incorporated into perovskite as an additive to inhibit the oxidation of iodide anion (I-) and  the light-induced degradation pathway of FAPbI3→FAI+PbI2. Additionally, the formation of a thiol-disulfide/I--I2 redox pair within the perovskite film provides a dynamic mechanism for the continuous reduction of I2 under light and thermal stresses, facilitating the healing of iodine-induced degradations. This approach significantly enhances the operational stability of PSCs. Under the ISOS-L-3 testing protocol (maximum power point (MPP) tracking in an environment with relative humidity of ≈50% at ≈65 °C), the treated PSCs maintain 97% of their original power conversion efficieney (PCE) after 300 h of aging. In contrast, control devices exhibit almost complete degradation, primarily due to rapid thermal-induced I2 volatilization. These results demonstrate a promising strategy to overcome critical stability challenges in PSCs, particularly in scenarios involving thermal effects.

4.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28961331

RESUMO

Optoelectronic devices based on hybrid perovskites have demonstrated outstanding performance within a few years of intense study. However, commercialization of these devices requires barriers to their development to be overcome, such as their chemical instability under operating conditions. To investigate this instability and its consequences, the electric field applied to single crystals of methylammonium lead bromide (CH3 NH3 PbBr3 ) is varied, and changes are mapped in both their elemental composition and photoluminescence. Synchrotron-based nanoprobe X-ray fluorescence (nano-XRF) with 250 nm resolution reveals quasi-reversible field-assisted halide migration, with corresponding changes in photoluminescence. It is observed that higher local bromide concentration is correlated to superior optoelectronic performance in CH3 NH3 PbBr3 . A lower limit on the electromigration rate is calculated from these experiments and the motion is interpreted as vacancy-mediated migration based on nudged elastic band density functional theory (DFT) simulations. The XRF mapping data provide direct evidence of field-assisted ionic migration in a model hybrid-perovskite thin single crystal, while the link with photoluminescence proves that the halide stoichiometry plays a key role in the optoelectronic properties of the perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA