RESUMO
A comprehensive genomic scan of selective sweeps was conducted in autochthonous Attappady Black and improved dual-purpose Malabari goat breeds in south India. High-throughput single nucleotide polymorphism (SNP) marker data, obtained through Illumina goat SNP50 BeadChip genotyping of 48 goats (24 each of Attappady Black and Malabari goats), were utilized for the analysis. Selection signature analysis, employing hapFLK analysis based on haplotype differentiation, identified seven significant sweep regions (p < 0.005). Notably, one of these regions encompassed the genomic area housing the casein cluster and quantitative trait loci associated with milk production on chromosome 6. Gene ontology enrichment analysis of 166 putative selective genes associated with these sweep regions revealed 13 significantly over-represented Panther pathways (p ≤ 0.05), including the TGF-beta signalling pathway and GNRHR pathway. The selective sweeps detected in this study contributed significantly to the phenotypic divergence observed between Attappady Black and Malabari goats in south India.
Assuntos
Cabras , Haplótipos , Polimorfismo de Nucleotídeo Único , Animais , Cabras/genética , Cabras/fisiologia , Índia , Seleção Genética , Feminino , Reprodução , Locos de Características Quantitativas , Cruzamento , GenótipoRESUMO
Since domestication, horse breeds have adapted to their environments and differentiated from one another. This paper uses two methods to detect selection signatures in 23 horse breeds, eight of which are Brazilian (610 animals), both cold-blooded and warm-blooded, from temperate and tropical regions. These animals were genotyped using the GGP Equine BeadChip and we analysed the data by Principal Component Analysis (PCA). The samples were separated into groups based on their geographical area of origin and PCA results studied. The genomic regions under selection were detected by hapFLK and PCAdapt methodologies, identifying six regions under selection with at least one Brazilian horse breed. These regions contain genes associated with heat tolerance, skin colour, body size, energy production/metabolism, genes involved in protein degradation/turnover/DNA repair, genes reducing the impact of oxidative stress/cellular repair, and transcriptional regulation. This work confirmed LCORL and NCAPG gene regions in previous studies associated with body size on Equine Chromosome Autosome 3 (ECA3). On the same ECA3, a region implicating genes linked to coat colour was identified, also previously related to heat stress. Regions with genes coding heat shock proteins were found on ECA1 and 2, and many candidate genes for oxidation-reduction which are a natural response to heat stress. However, a larger sample size and whole-genome SNPs are needed to understand better and identify new candidate regions as well as their functional relation with heat tolerance.
Assuntos
Termotolerância , Animais , Brasil , Genoma , Genômica/métodos , Genótipo , Cavalos/genética , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética , Termotolerância/genéticaRESUMO
The genomes of local livestock could shed light on their genetic history, mechanisms of adaptations to environments and unique genetics. Herein we look into the genetics and adaptations of the Russian native dairy Yaroslavl cattle breed using 22 resequenced individuals and comparing them with two related breeds (Russian Kholmogory and Holstein), and to the taurine set of the 1000 Bull Genomes Project (Run 9). HapFLK analysis with Kholmogory and Holstein breeds (using Yakut cattle as outgroup) resulted in 22 regions under selection (q-value < 0.01) on 11 chromosomes assigned to Yaroslavl cattle, including a strong signature of selection in the region of the KIT gene on BTA6. The FST (fixation index) with the 1000 Bull Genomes Dataset showed 48 non-overlapping top (0.1%) FST regions of which three overlapped HapFLK regions. We identified 1982 highly differentiated (FST > 0.40) missense mutations in the Yaroslavl genomes. These genes were enriched in the epidermal growth factor and calcium-binding functional categories. The top FST intervals contained eight genes with allele frequencies quite different between the Yaroslavl and Kholmogory breeds and the rest of the 1000 Bull Genomes Dataset, including KAT6B, which had a nearly Yaroslavl breed-specific deleterious missense mutation with the highest FST in our dataset (0.99). This gene is a part of a long haplotype containing other genes from FST and hapFLK analyses and with a negative association with weight and carcass traits according to the genotyping of 30 phenotyped Yaroslavl cattle individuals. Our work provides the industry with candidate genetic variants to be focused on in breed improvement efforts.
Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Frequência do Gene , Haplótipos , Masculino , Fenótipo , Seleção Genética , Análise de Sequência de DNARESUMO
BACKGROUND: An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). RESULT: Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish's ASD-like behaviors, implying shared aspects of neural processing. CONCLUSION: Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time.
Assuntos
Transtorno Autístico/genética , Evolução Biológica , Characidae/genética , Predisposição Genética para Doença , Característica Quantitativa Herdável , Animais , Transtorno Autístico/tratamento farmacológico , Cavernas , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica , Genoma , Humanos , Hibridização Genética , Masculino , Fenótipo , Locos de Características Quantitativas/genética , Fatores de RiscoRESUMO
BACKGROUND: The detection of signatures of selection has the potential to elucidate the identities of genes and mutations associated with phenotypic traits important for livestock species. It is also very relevant to investigate the levels of genetic diversity of a population, as genetic diversity represents the raw material essential for breeding and has practical implications for implementation of genomic selection. A total of 1151 animals from nine goat populations selected for different breeding goals and genotyped with the Illumina Goat 50K single nucleotide polymorphisms (SNP) Beadchip were included in this investigation. RESULTS: The proportion of polymorphic SNPs ranged from 0.902 (Nubian) to 0.995 (Rangeland). The overall mean HO and HE was 0.374 ± 0.021 and 0.369 ± 0.023, respectively. The average pairwise genetic distance (D) ranged from 0.263 (Toggenburg) to 0.323 (Rangeland). The overall average for the inbreeding measures FEH, FVR, FLEUT, FROH and FPED was 0.129, -0.012, -0.010, 0.038 and 0.030, respectively. Several regions located on 19 chromosomes were potentially under selection in at least one of the goat breeds. The genomic population tree constructed using all SNPs differentiated breeds based on selection purpose, while genomic population tree built using only SNPs in the most significant region showed a great differentiation between LaMancha and the other breeds. We hypothesized that this region is related to ear morphogenesis. Furthermore, we identified genes potentially related to reproduction traits, adult body mass, efficiency of food conversion, abdominal fat deposition, conformation traits, liver fat metabolism, milk fatty acids, somatic cells score, milk protein, thermo-tolerance and ear morphogenesis. CONCLUSIONS: In general, moderate to high levels of genetic variability were observed for all the breeds and a characterization of runs of homozygosity gave insights into the breeds' development history. The information reported here will be useful for the implementation of genomic selection and other genomic studies in goats. We also identified various genome regions under positive selection using smoothed FST and hapFLK statistics and suggested genes, which are potentially under selection. These results can now provide a foundation to formulate biological hypotheses related to selection processes in goats.
Assuntos
Variação Genética , Genoma , Cabras/genética , Animais , Orelha/anatomia & histologia , Orelha/fisiologia , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Heterozigoto , Homozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
South Africa boasts a diverse range of pig populations, encompassing intensively raised commercial breeds, as well as indigenous and village pigs reared under low-input production systems. The aim of this study was to investigate how natural and artificial selection have shaped the genomic landscape of South African pig populations sampled from different genetic backgrounds and production systems. For this purpose, the integrated haplotype score (iHS), as well as cross population extended haplotype homozygosity (XP-EHH) and Lewontin and Krakauer's extension of the Fst statistic based on haplotype information (HapFLK) were utilised. Our results revealed several population-specific signatures of selection associated with the different production systems. The importance of natural selection in village populations was highlighted, as the majority of genomic regions under selection were identified in these populations. Regions under natural and artificial selection causing the distinct genetic footprints of these populations also allow for the identification of genes and pathways that may influence production and adaptation. In the context of intensively raised commercial pig breeds (Large White, Kolbroek, and Windsnyer), the identified regions included quantitative loci (QTLs) associated with economically important traits. For example, meat and carcass QTLs were prevalent in all the populations, showing the potential of village and indigenous populations' ability to be managed and improved for such traits. Results of this study therefore increase our understanding of the intricate interplay between selection pressures, genomic adaptations, and desirable traits within South African pig populations.
RESUMO
Selection for rapid growth in chickens has always been accompanied by increased fat deposition and excessive fat deposition, especially abdominal fat, cannot only decrease feed efficiency but also cause many diseases. Finding the candidate genes associated with abdominal fat deposition is essential for breeding. To identify these candidate genes, we applied linkage disequilibrium and selection signature analysis using chicken 60 k single nucleotide polymorphism (SNP) chips in two broiler lines divergently selected for abdominal fat content for 11 generations. After quality control, 46,033 SNPs were left for analysis. Using these SNPs, we found that r2 was 0.06 to 0.14 in the lean line and 0.07 to 0.13 in the fat line for all 28 chromosomes (except GGA16). Pairwise SNP distances <25 kb showed a mean r2 = 0.33 in the lean line and r2 = 0.32 in the fat line. The fixation index (FST) analysis was carried out and 46 SNPs with the top 0.1% of the FST value was detected as the loci with selection signatures. Besides FST, hapFLK was also used to detect selection signatures for abdominal fat content. A total of 11 genes, including transient receptor potential cation channel subfamily C member 4, estrogen related receptor gamma, fibroblast growth factor 13, G-protein-signaling modulator 2, RAR related orphan receptor A, phospholipase A2 group X, mitochondrial ribosomal protein L28, metadherin, calcitonin receptor like receptor, serine/threonine kinase 39, and nuclear factor I A, were detected as the important candidate genes for abdominal fat deposition based on their basic functions. The results of the present study may benefit the understanding of genetic mechanism of abdominal fat deposition in chicken.