Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234911

RESUMO

The objective of the present study is to enhance the resistant starch (RS) content of high amylose rice starch with heat-moisture treatment (HMT) for industrial application. The optimized HMT condition for achieving the highest RS content established using response surface methodology (RSM) was a temperature of 100 °C, moisture content of 24.2%, and a time of 11.5 h. Upon HMT, the RS content increased from 32.1% for native starch to 46.4% in HMT starch with optimized condition. HMT of the starches reduced the solubility and swelling power. The surface of HMT starch granules was more irregular than native starch. The X-ray diffraction (XRD) peak intensity at 2θ = 5° was greatly reduced by HMT, and the peaks at 22.7° and 24.2° were merged. HMT increased the gelatinization temperature and reduced the gelatinization enthalpy. HMT provides a method for the production of high-yield RS2 with high amylose rice starch in industrial application.


Assuntos
Amilose , Oryza , Temperatura Alta , Amido Resistente , Amido , Água , Difração de Raios X
2.
Food Technol Biotechnol ; 60(1): 99-108, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35440882

RESUMO

Research background: Various processing techniques significantly affect physicochemical and functional properties of rice flour and the quality of the final products. This study aims to modify rice flour with different treatments and to select the best one to develop rice and wheat-based leavened food products. Experimental approach: Eight treatment combinations were applied on rice flour according to 23 factorial design considering three variables at two levels, namely, pretreatment of rice grain (heat-moisture treatment, dual modification treatment: soaking of rice grains in NaHCO3 solution followed by heat treatment), grinding method (dry or wet grinding), and flour particle size (75-180 and <75 µm). Eight dough samples were prepared by mixing 50 g rice flour from each treatment with 50 g wheat flour. Then, the dough samples were subjected to fermentation and gelatinization under pressure (externally applied 1.0 kg/cm2 initial air pressure) in a pressure adjustable chamber. Results and conclusions: Rice flour sample with particle size of 75-180 µm that underwent heat-moisture treatment followed by wet grinding improved the gas retention capacity of the leavened dough. With the externally applied initial air pressure of 1.0 kg/cm2, we obtained highly porous and better textured rice and wheat-based leavened food products. Novelty and scientific contribution: Rice flour can be modified using the described method to improve its functional properties, and the textural and structural properties of rice and wheat-based leavened food products. Also, conducting fermentation and gelatinization under pressure is a novel food processing technique, which contributes to restricting the escape of gas from leavened rice/wheat composite dough mass.

3.
Crit Rev Food Sci Nutr ; 61(15): 2482-2505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34374585

RESUMO

Starch is a versatile and a widely used ingredient, with applications in many industries including adhesive and binding, paper making, corrugating, construction, paints and coatings, chemical, pharmaceutical, textiles, oilfield, food and feed. However, native starches present limited applications, which impairs their industrial use. Consequently, starch is commonly modified to achieve desired properties. Chemical treatments are the most exploited to bring new functionalities to starch. However, those treatments can be harmful to the environment and can also bring risks to the human health, limiting their applications. In this scenario, there is a search for techniques that are both environmentally friendly and efficient, bringing new desired functionalities to starches. Therefore, this review presents an up-to-date overview of the available literature data regarding the use of environmentally friendly treatments for starch modification. Among them, we highlighted an innovative chemical treatment (ozone) and different physical treatments, as the modern pulsed electric field (PEF), the emerging ultrasound (US) technology, and two other treatments based on heating (dry heating treatment - DHT, and heat moisture treatment - HMT). It was observed that these environmentally friendly technologies have potential to be used for starch modification, since they create materials with desirable functionalities with the advantage of being categorized as clean label ingredients.


Assuntos
Calefação , Amido , Eletricidade , Temperatura Alta , Humanos
4.
Molecules ; 26(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299614

RESUMO

Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7-35.4% to 2.7-20%), increased the damage starch (from about 0.5-1.6% to 2.4-23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.


Assuntos
Lotus/química , Amido Resistente/análise , Rizoma/química , Cristalização , Temperatura Alta , Umidade , Viscosidade
5.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299557

RESUMO

Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets' starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets' starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.


Assuntos
Panicum/química , Amido/química , Ceras/química , Cristalização , Manipulação de Alimentos , Alimento Funcional , Solubilidade , Temperatura , Viscosidade
6.
J Sci Food Agric ; 101(1): 253-261, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460192

RESUMO

BACKGROUND: The use of damaged beans for starch isolation comprises an end-use alternative for a product that is not accepted by the consumer. For that reason, isolation and modification of Carioca bean starch should be explored and evaluated as a suitable source for biodegradable material. The present study aimed to evaluate the synergism of physical and chemical modifications on Carioca bean starch with respect to improving the properties of biodegradable films. A heat-moisture treatment (HMT) followed by oxidation by sodium hypochlorite was performed and vice versa. RESULTS: Synergism was noted in the starch properties compared to the single modification. When the oxidation was applied first, a higher amylose and carbonyl content was noted. HMT, isolated and as a second modification, caused a more pronounced effect on viscosity profile than the oxidized starch, with an increase in paste temperature and a decrease in viscosity, breakdown and final viscosity. CONCLUSION: The results obtained in the present study reflect a decrease in water vapor permeability, although a higher tensile strength was noted when oxidation was applied, as a single and as a first modification. © 2020 Society of Chemical Industry.


Assuntos
Fabaceae/química , Extratos Vegetais/química , Amido/química , Oxirredução , Permeabilidade , Extratos Vegetais/isolamento & purificação , Amido/isolamento & purificação , Vapor/análise , Resistência à Tração , Viscosidade
7.
J Food Sci Technol ; 58(2): 412-426, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33564199

RESUMO

Several methods are currently employed in the modification of starch obtained from different botanical sources. Starch in its native form is limited in application due to retrogradation, syneresis, inability to withstand shear stress as well as its unstable nature at varying temperatures and pH environment. Modification of starch is therefore needed to enhance its food and industrial application. A primary and safe means of modifying starch for food and industrial use is through hydrothermal methods which involves heat-moisture treatment and annealing. Heat-moisture treatment (HMT) is a physical modification technique that improves the functional and physicochemical properties of starch without changing its molecular composition. Upon modification through HMT, starches from cereals, legumes and tuber crops serve as important ingredients in diverse food, pharmaceutical and industrial processes. Although changes in starch initiated by HMT have been studied in starches of different plant origin, this work further provides insight on the composition, thermal and functional properties of heat-moisture treated starch obtained from cereals, legumes and tuber crops.

8.
J Food Sci Technol ; 58(12): 4636-4645, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34629528

RESUMO

The heat susceptibility of starch granule structure has been considering as significant limitation of germinated black rice (GBR) using in food processing industry. Therefore, this study aimed to improve the physicochemical and antioxidation property as well as its effect on the probiotics of GBR by heat moisture treatment (HMT). Black rice germinated at 37.5 °C for 12, 24, and 36 h were studied. Ultrastructural image of each sample was visualized through scanning electron microscope. The results illustrated 24 h-GBR retain its former shape with rough surface. Subsequently, 24 h-GBR was structurally modified by HMT with moisture levels of 20% and 25% for 1 and 2 h. The results showed that pasting properties of HMT-treated GBR were improved. This was particularly on, GBR using HMT condition of 25% moisture for 2 h decrease in breakdown viscosity was shown. Moreover, phenolic content of HMT-treated GBR was higher than those of GBR. Besides, the number of the Lactobacillus paracasei TOKAI 13 was increased in GBR and HMT-treated GBR with counts of 10.08 ± 0.83 Log CFU/ml and 9.31 ± 0.33 Log CFU/ml, respectively, with significant increases in antioxidant property. Therefore, the HMT-GBR could be utilized as an alternative functional ingredient in food processing products.

9.
J Food Sci Technol ; 58(12): 4785-4794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34629543

RESUMO

Starch was extracted from the rice bean which is largely underutilized and modified by physical (i.e. heat moisture treatment and retrogradation) and chemical (i.e. esterification and acid alcohol modification) methods. Both, physical and chemical modifications significantly (p < 0.05) affected the physicochemical, pasting, particle size and morphological properties of rice bean starch. Both amylose content and swelling power reduced after physical and chemical modifications. Among modified starches, retrograded starch showed higher solubility (8.56%) at 90 °C. Retrogradation also resulted in higher values of water (251%) and oil absorption (106%) capacities in comparison to other modified starches. Physical modifications greatly influenced the pasting properties in comparison to chemical modifications. The particle size distribution followed the order: native starch (659.8 nm) > heat moisture treated (434.3 nm) > retrograded (355.4 nm) > esterified (218 nm) > acid alcohol treated starch (234.5 nm). The study revealed that the particle size of rice bean starch was reduced by both physical and chemical modifications. FE-Scanning electron microscopy was used to study the morphological characteristics of starches and it was observed that retrogradation had a pronounced effect on the starch granules morphology.

10.
Crit Rev Food Sci Nutr ; 60(22): 3890-3915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31542935

RESUMO

The physicochemical properties of starch can be modified by hydrothermal treatments, inducing changes of dough and final product properties. The effect of these treatments depends on the temperature, the starch-moisture ratio and the exposure time. The most used hydrothermal treatments applied on cereals and pseudocereals starches and flours are heat moisture treatment (HMT) and annealing (ANN). The differences between HMT and ANN consist of working temperatures and moisture content. In HMT the treatment temperature is above the gelatinization temperature, while in ANN it is comprised between the gelatinization temperature and the glass transition. This paper aims to summarize the influence of these thermal treatments on the starches (crystallinity, swelling and water absorption, thermal, gelatinization, pasting, retrogradation, and digestibility properties) and the impact on the rheological and textural characteristics of dough and final product. This review highlights the possibility to use modified starches and treated flours in food products development and to evaluate the effects of hydrothermal treatments on starch and flour functionality.


Assuntos
Farinha , Amido , Temperatura Alta , Temperatura , Água
11.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255799

RESUMO

Tapioca and potato starches were used to investigate the effect of heat-moisture treatment (HMT; 95-96 °C, 0-60 min, 1-6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47-63% and 0-36%, and those of HMT potato starch were 89-92% and 63-94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.


Assuntos
Temperatura Alta , Amido/química , Vapor , Fenômenos Químicos , Peso Molecular , Transição de Fase , Solubilidade , Termogravimetria , Fatores de Tempo , Viscosidade
12.
J Food Sci Technol ; 55(12): 4937-4944, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30482989

RESUMO

Legumes and cereals complement their nutritional quality and there is a need of convenience products made with these grains. The objectives of this study were to determine the rheological and functional properties of precooked red kidney bean (RKB) flours and their effect on viscoelastic properties of gluten free cake batter and cupcake quality including consumer acceptance. RKB flours were thermally processed by boiling at 100 °C (0, 20, 30 and 40 min) and drying at 80 °C (3 and 4 h). Rheological properties of cake batter containing 100% RKB flour were tested by creep-recovery and dynamic frequency tests. Batter of RKB flour boiled for 20 min was significantly stiffer with 100 times less deformable character compared to the control. Increase in batter modulus ranged from 2000 times elastic component (G'), 988 times viscous component (G″) and 1805 times complex viscosity (η*) at 20 min boiling. Drying did not have a significant effect on viscoelastic properties. Firmness and height of gluten free RKB cupcake were not affected by heat treatment. RKB gluten free cake after heat-moisture treatment had improved consumer acceptance scores compared to the control. Our findings showed that 20 min boiling and 3 h drying process is adequate for precooked RKB flour.

13.
J Sci Food Agric ; 97(10): 3114-3123, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27882554

RESUMO

BACKGROUND: Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. RESULTS: At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. CONCLUSION: The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry.


Assuntos
Gelatina/química , Solanum tuberosum/química , Amido/química , Tecnologia de Alimentos , Temperatura Alta , Solubilidade , Viscosidade , Água/análise
14.
J Food Sci Technol ; 52(10): 6502-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26396395

RESUMO

Pearl millet (Pennisetum typhoides) starch was subjected to heat moisture treatment (HMT) at different moisture levels i.e., 20 % (HMT-20), 25 % (HMT-25) & 30 % (HMT-30) for 8 h at 110 °C and evaluated for changes in rheological, thermal, functional and morphological properties. Peak, breakdown, cool paste and setback viscosity decreased, while pasting temperature increased after HMT. Shear stability of HMT-30 sample was maximum (stability ratio 0.54). Highest (33.5 Pa) G' value was observed for native and lowest (14.8 Pa) for HMT-25 sample. Yield and flow point of starch gels also decreased after HMT, indicating softer gels and higher spreadability. HMT increased gelatinization temperature from 62.59 °C for native to 84.05 °C for HMT-30. Resistant starch content increased about three times in HMT-30 sample (7.07 %) as compared to native. Swelling power and solubility decreased after HMT. HMT also induced cavity and some dents on starch granules surface.

15.
J Food Sci Technol ; 52(1): 375-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25593372

RESUMO

Modification of starch led to new products with new desirable properties. Corn starch samples modified by acid hydrolysis combined with heat moisture treatment (AH-HMT) were made by changing pH, moisture content and treated temperature. After modification, swelling power at temperature higher than 75 °C of corn starches decreased while solubility of the starches increased. After AH-HMT, pasting temperature (PT) of all treated starch samples increased. But lower peak viscosity (PKV), trough viscosity (TV) and break down (BD) of most treated starch samples were observed. AH-HMT increased the gel hardness of all treated starches. And the biggest hardness of modified starch gel was 148.419 g, improving 93.471 g compared with native starch gel. The melting temperatures (To, Tp, Tc) of modified starch increased, but the melting range and △H decreased. The X-ray pattern remained practically unchanged with or without AH-HMT. Acid hydrolysis combined with heat moisture treatment (AH-HMT) improved the functional properties of corn starch.

16.
Biopolymers ; 101(8): 871-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24488699

RESUMO

The importance of glucan chains that pass through both the amorphous and crystalline lamellae (tie chains) in the organization of corn starch granules was studied using heat-moisture treatment (HMT), annealing (ANN), and iodine binding. Molecular structural analysis showed that hylon starches (HV, HVII, and HVIII) contained higher proportion of intermediate glucan chains (HVIII > HVII > HV) than normal corn (CN) starch. Wide angle X-ray scattering revealed that on HMT, the extent of polymorphic transition in hylon starches decreased with increasing proportion of intermediate and long chains. Iodine treated hylon starches exhibited increased order in the V-type polymorphism as evidenced by the intense peak at 20° 2θ and the strong reflection intensity at 7.5° 2θ and the extent of the change depended on the type of hylon starch. DSC results showed that the gelatinization enthalpy of CN and waxy corn starch (CW) remained unchanged after ANN. However, hylon starches showed a significant increase in enthalpy with more distinct endotherms after ANN. It can be concluded that tie chains influence the organization of crystalline lamellae in amylose extender mutant starches.


Assuntos
Iodo/química , Amido/química , Temperatura , Água/química , Zea mays/química , Varredura Diferencial de Calorimetria , Fracionamento Químico , Cromatografia em Gel , Cristalização , Géis/química , Análise Espectral , Amido/ultraestrutura , Difração de Raios X
17.
Int J Biol Macromol ; : 133254, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38942672

RESUMO

This study aimed to investigate the effect of heat-moisture treatment (HMT)-modified highland barley (HB) on interactions between gluten and starch granules in dough. The results demonstrated that HB addition increased the water absorption, weakened the extensibility, increased the storage modulus (G') and loss modulus (G″), decreased tan δ (G"/G') of dough. The textural and stress relaxation results showed that HB increased the hardness and elastic modulus (E2) of the dough, requiring more stress to compress the dough. Also, the increase in sulfhydryl and surface hydrophobicity all confirmed the addition of HB induced the deterioration of gluten network structure. Furthermore, HMT-HB improved farinograph quality number of flour, decreased tan δ of dough compared with HB. The E2, coefficient of viscosity (η) and hardness increased, while the relaxation time (τ) decreased with increasing HMT strength of HB, suggesting the formation of a tighter dough structure. The secondary structure and microstructure analyses revealed that the HMT could reduce the damage of HB to dough quality. These results indicated that HMT had the potential to enhance the interaction between starch and protein, leading to a denser dough matrix. This study facilitates the basic theory for the comprehensive utilization of HB in the food industry.

18.
Foods ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998574

RESUMO

Taopian is a traditional Chinese pastry made from cooked glutinous rice flour. The effects of heat-moisture treatment (110 °C, 4 h; moisture contents 12-36%, w/w) on the preparation of cooked glutinous rice flour and taopian made from it were compared with the traditional method of stir-frying (180 °C, 30 s). The color of heat-moisture-treated (HMT) flours was darker. HMT flours exhibited a larger mean particle size (89.5-124 µm) and a greater relative crystallinity of starch (23.08-42.92%) and mass fractal dimension (1.77-2.28). The flours exhibited water activity in the range of 0.589-0.631. Although the oil-binding capacity of HMT flours was largely comparable to that of stir-fried flours, HMT flours exhibited a lower water absorption index. Accordingly, the taopian produced with HMT flours exhibited a lower brightness, accompanied by a stronger reddening and yellowing. In addition, more firmly bound water was observed in the taopian produced with HMT flour. The taopian made with HMT flour with a moisture content of 24% exhibited moderate hardness, adhesiveness and cohesiveness and received the highest score for overall acceptability (6.80). These results may be helpful to improve the quality of taopian by applying heat-moisture treatment in the preparation of cooked glutinous rice flour.

19.
Int J Biol Macromol ; 259(Pt 1): 129173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181923

RESUMO

Modified starch was prepared from japonica starch (JS) by heat-moisture treatments (HMT). Under the same moisture content and HMT temperature, the effects of various HMT times on the structural, properties of JS and its in vitro digestibility properties were investigated. The results showed that adhesion occurred between the particles of japonica starch after the HMT, and there were depressions on the surface. The size of the JS particles increased, the short-range ordering and relative crystallinity of the HMT-modified starch increased and gradually decreased, reaching a peak of 36.51 % at 6 h, as the HMT time was extended. The pasting indexes of HMT-modified starch decreased and then increased with the increase of the HMT time; compared with JS, the thermal stability of HMT-modified starch increased while the pasting enthalpy decreased. All the HMT-modified starches were weakly gelatinous systems and pseudoplastic fluids. Following HMT, the amount of resistant starch (RS) and slowly digested starch (SDS) grew initially before declining. The amount of RS in HMT-modified starch peaked at 24.28 % when the HMT time was 6 h. The results of this research can serve as a theoretical foundation for the creation of modified japonica starch and its use in the food industry.


Assuntos
Temperatura Alta , Amido , Amido/química , Temperatura , Termodinâmica , Amido Resistente
20.
Int J Biol Macromol ; 254(Pt 3): 127961, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951440

RESUMO

Currently, chestnuts attract more attention among consumers due to its rich nutritional functions, but systematic evaluation on the effect of thermal processing on its nutritional value is still limited. In this work, based on results of microstructural properties that heat-moisture treatment (HMT) could enhance the total ordered degree of starch structure in whole chestnut flour (CN) and promote the formation of anti-enzymatic component, in vitro experiment was then conducted and confirmed that HMT could significantly reduce the predicted glycemic index (pGI) of CN from 75.6 to 64.3 and improve its dietary fiber content from 7.06 to 13.42 g/100 g (p < 0.05). Further dietary intervention studies with CN and heat-moisture treated CN (HMT-CN) supplementation on the high-fat diet (HFD) consuming mice were discussed in terms of gut microbiota and its metabolites changes. The results showed that both CN and HMT-CN significantly resisted the weight gain induced by HFD, while HMT-CN had better serum lipid regulation effect. However, they had different effects on the gut metabolism pathways, among which CN inhibited the production of stearamine by promoting the proliferation of Dubosiella, while HMT-CN contributed to the growth of Lachnoclostridium, Desulfovibrio, and Faecalibaculum which stimulated the formation of associated metabolites including jwh-018-d11, valylproline, tetranor-12(S)-HETE, and PA (3:0/18:0). Overall, these discoveries could provide basic data for the effective utilization of CN in food industry processing.


Assuntos
Microbioma Gastrointestinal , Amido , Animais , Camundongos , Amido/química , Farinha/análise , Temperatura Alta , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA