Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Small ; 20(42): e2403141, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38874056

RESUMO

Unique suspension solar evaporator is one of the effective measures to address the major bottleneck of the emerging interfacial evaporators, i.e., the accumulation of salts on the surface. Yet, it remains a considerable challenge to avoid substantial heat loss underwater. Herein, a suspension wood-based evaporator is proposed with a thermal convection structure that effectively balances the contradiction between salt-resistance ability and heat loss. Benefitting from the heat centralization due to thermal convection, such suspension evaporator exhibits an excellent steam generation rate, which increases from 1.23 to 1.63 kg m-2 h-1 compared to the conventional suspension evaporator. Simultaneously, the steam generation rate retention improves from 64.9% over 20 test cycles to nearly 100% compared to the interfacial evaporator. This work provides an effective pathway for exploring efficient and stable suspension evaporators, offering essential directions for the future development and application of solar-driven evaporation technologies.

2.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R588-R598, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682241

RESUMO

Type 2 diabetes (T2D) is associated with reduced whole body sweating during exercise-heat stress. However, it is unclear if this impairment is related to exercise intensity and whether it occurs uniformly across body regions. We evaluated whole body (direct calorimetry) and local (ventilated-capsule technique; chest, back, forearm, thigh) sweat rates in physically active men with type 2 diabetes [T2D; aged 59 (7) yr; V̇o2peak 32.3 (7.6) mL·kg-1·min-1; n = 26; HbA1c 5.1%-9.1%] and without diabetes [Control; aged 61 (5) yr; V̇o2peak 37.5 (5.4) mL·kg-1·min-1; n = 26] during light- (∼40% V̇o2peak), moderate- (∼50% V̇o2peak), and vigorous- (∼65% V̇o2peak) intensity exercise (elicited by fixing metabolic heat production at ∼150, 200, 250 W·m-2, respectively) in 40°C, ∼17% relative humidity. Whole body sweating was ∼11% (T2D: Control mean difference [95% confidence interval]: -37 [-63, -12] g·m-2·h-1) and ∼13% (-50 [-76, -25] g·m-2·h-1) lower in the T2D compared with the Control group during moderate- and vigorous- (P ≤ 0.001) but not light-intensity exercise (-21 [-47, 4] g·m-2·h-1; P = 0.128). Consequently, the diabetes-related reductions in whole body sweat rate were 2.3 [1.6, 3.1] times greater during vigorous relative to light exercise (P < 0.001). Furthermore, these diabetes-related impairments in local sweating were region-specific during vigorous-intensity exercise (group × region interaction: P = 0.024), such that the diabetes-related reduction in local sweat rate at the trunk (chest, back) was 2.4 [1.2, 3.7] times greater than that at the limbs (thigh, arm). In summary, when assessed under hot, dry conditions, diabetes-related impairments in sweating are exercise intensity-dependent and greater at the trunk compared with the limbs.NEW & NOTEWORTHY This study evaluates the influence of exercise intensity on decrements in whole body sweating associated with type 2 diabetes. Furthermore, it investigates whether diabetes-related sweating impairments were exhibited uniformly or heterogeneously across body regions. We found that whole body sweating was attenuated in the type 2 diabetes group relative to control participants during moderate- and vigorous-intensity exercise but not light-intensity exercise; impairments were largely mediated by reduced sweating at the trunk rather than the limbs.


Assuntos
Diabetes Mellitus Tipo 2 , Exercício Físico , Sudorese , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Idoso , Estudos de Casos e Controles , Regulação da Temperatura Corporal
3.
Int J Legal Med ; 138(5): 1991-2002, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38772947

RESUMO

In forensic casework, time since death (TSD) estimations may play a crucial role to establish chains of events as well as for alibi assessment in homicide cases. Classical TSD estimation relies on reasonably stable ambient temperatures and a correct documentation of ambient and rectal temperatures. This constancy is in some cases disturbed by post-discovery alterations of the crime scene, e.g. opening a window. In order to develop a better understanding of this alteration-based detrimental impact on TSD estimation as well as to identify feasible recommendations for casework, the present pilot study examined ambient temperature effects of different window opening scenarios regarding various time intervals (5 to 360 min) in a furnished 10 m2 apartment during winter. In this context, in addition to the ambient temperature and thus the cooling rate of the room, re-approximation to initial room temperature, potential influences on a nomogram-based time since death estimation using a fictitious case, and the impact of the measurement height above the ground were investigated. Our data indicate a significant reduction of the mean temperature decrease rate after 15 min regardless of the remaining opening time and a correlation with the size of the respective opening surfaces. Re-approximation to initial room temperatures was observed with up to three times longer than the initial opening time. There was no evidence of a substantial advantage of temperature measurements above the level of the corpse (> 0.1 m). The limitations of the study and its applicability for forensic casework are critically reviewed.


Assuntos
Mudanças Depois da Morte , Temperatura , Humanos , Projetos Piloto , Fatores de Tempo , Medicina Legal , Temperatura Corporal
4.
Vet Anaesth Analg ; 51(4): 357-361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38772852

RESUMO

OBJECTIVE: To compare changes in oesophageal (T-Oeso) and rectal (T-Rec) temperature in dogs during general anaesthesia and premedicated with fentanyl, medetomidine-fentanyl or acepromazine-fentanyl. STUDY DESIGN: Prospective, randomized, blind clinical study. ANIMALS: A total of 120 healthy dogs, aged 2-10 years and weighing 5-20 kg. METHODS: Dogs were randomly allocated to one of three groups. Animals of F group were premedicated with fentanyl (0.01 mg kg-1), MF group with medetomidine (0.005 mg kg-1) and fentanyl (0.01 mg kg-1) and AF group with acepromazine (0.01 mg kg-1) and fentanyl (0.01 mg kg-1). Anaesthesia was induced with propofol and maintained with isoflurane in oxygen-air mixture. Fentanyl was administered continuously (0.01 mg kg-1 hour-1). The T-Oeso, T-Rec and ambient temperatures were recorded after induction (T0) and subsequently at 10 minute intervals for 60 minutes (T10-T60). Data were analysed using anova or their non-parametric equivalents (p < 0.05). RESULTS: Median T-Oeso was significantly higher in MF group between T0-T20 compared with other groups. Median T-Oeso significantly decreased in F group from 38.0 °C (T0) to 37.4 °C (T30), 37.1 °C (T40), 36.9 °C (T50) and 36.6 °C (T60), in MF group from 38.3 °C (T0) to 37.7 °C (T30), 37.5 °C (T40), 37.2 °C (T50) and 37.1 °C (T60) and in AF group from 37.7 °C (T0) to 37.3 °C (T40), 37.2 °C (T50) and 37.1 °C (T60). The T-Rec significantly decreased in F group from 38.0 °C (T0) to 37.4 °C (T40), 37.2 °C (T50) and 36.9 °C (T60), in MF group from 38.3 °C (T0) to 37.5 °C (T50) and 37.4 °C (T60) and in AF group from 38.2 °C (T0) to 37.6 °C (T40), 37.5 °C (T50) and 37.4 °C (T60). CONCLUSIONS AND CLINICAL RELEVANCE: Premedication with fentanyl, medetomidine-fentanyl or acepromazine-fentanyl in the doses used decreased the T-Oeso and T-Rec. The T-Oeso at the beginning of anaesthesia was higher after premedication with medetomidine-fentanyl. However, this difference was not clinically significant.


Assuntos
Acepromazina , Temperatura Corporal , Fentanila , Medetomidina , Animais , Cães , Fentanila/farmacologia , Fentanila/administração & dosagem , Medetomidina/farmacologia , Medetomidina/administração & dosagem , Acepromazina/farmacologia , Acepromazina/administração & dosagem , Masculino , Feminino , Temperatura Corporal/efeitos dos fármacos , Esôfago/efeitos dos fármacos , Reto , Estudos Prospectivos , Anestesia Geral/veterinária , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/administração & dosagem , Anestésicos Combinados/administração & dosagem , Anestésicos Combinados/farmacologia , Medicação Pré-Anestésica/veterinária
5.
Small ; 19(44): e2301077, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37401792

RESUMO

A Joule heater made of emerging 2D nanosheets, i.e., MXene, has the advantage of low-voltage operation with stable heat generation owing to its highly conductive and uniformly layered structure. However, the self-heated MXene sheets easily get oxidized in warm and moist environments, which limits their intrinsic heating efficiencies. Herein, an ultrathin graphene skin is introduced as a surface-regulative coating on MXene to enhance its oxidative stability and Joule heating efficiency. The skin layer is deposited on MXene using a scalable solution-phased layer-by-layer assembly process without deteriorating the excellent electrical conductivity of the MXene. The graphene skin comprises narrow and hydrophobic channels, which results in ≈70 times higher water impermeability of the hybrid film of graphene and MXene (GMX) than that of the pristine MXene. A complementary electrochemical analysis confirms that the graphene skin facilitates longer-lasting protection than conventional polymer coatings owing to its tortuous pathways. In addition, the sp2 planar carbon surface with a low heat loss coefficient improves the heating efficiency of the GMX, indicating that this strategy is promising for developing adaptive heating materials with a tractable voltage range and high Joule heating efficiency.

6.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R35-R44, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409026

RESUMO

Whether whole body heat loss and thermoregulatory function (local sweat rate and skin blood flow) are different between summer and autumn and between autumn and winter seasons during exercise with different air flow in humid heat remain unknown. We therefore tested the hypotheses that whole body sweat rate (WBSR), evaporated sweat rate, and thermoregulatory function during cycling exercise in autumn would be higher than in winter but would be lower than in summer under hot-humid environment (32 C, 75% RH). We also tested the hypothesis that the increase of air velocity would enhance evaporated sweat rate and sweating efficiency across winter, summer, and autumn seasons. Eight males cycled for 1 h at 40% V̇o2max in winter, summer, and autumn seasons. Using an electric fan, air velocity increased from 0.2 m/s to 1.1 m/s during the final 20 min of cycling. The autumn season resulted in a lower WBSR, unevaporated sweat rate, and a higher sweating efficiency compared with summer (all P ≤ 0.05) but WBSR and unevaporated sweat rate in autumn were higher than in winter and thus sweating efficiency was lower when compared with winter only at the air velocity of 0.2 m/s (All P ≤ 0.05). Furthermore, evaporated sweat rate and core temperature (Tcore) were not different among winter, summer, and autumn seasons (All P > 0.19). In conclusion, changes in WBSR across different seasons do not alter Tcore during exercise in a hot humid environment. Furthermore, increasing air velocity enhances evaporated sweat rate and sweating efficiency across all seasons.


Assuntos
Regulação da Temperatura Corporal , Sudorese , Masculino , Humanos , Estações do Ano , Regulação da Temperatura Corporal/fisiologia , Aclimatação/fisiologia , Pele/irrigação sanguínea , Temperatura Alta , Temperatura Corporal/fisiologia
7.
Nitric Oxide ; 138-139: 96-103, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619814

RESUMO

Iontophoretic transdermal administration of NG-nitro-l-arginine methyl ester hydrochloride [l-NAME, a nitric oxide synthase (NOS) inhibitor] has been used as a non-invasive evaluation of NOS-dependent mechanisms in human skin. However, the availability has yet to be investigated in sweating research. Prior observations using invasive techniques (e.g., intradermal microdialysis technique) to administer l-NAME have implicated that NOS reduces sweating induced by heat stress but rarely influences the response induced by the administration of cholinergic muscarinic receptor agonists. Therefore, we investigated whether the transdermal iontophoretic administration of l-NAME modulates sweating similar to those prior observations. Twenty young healthy adults (10 males, 10 females) participated in two experimental protocols on separate days. Before each protocol, saline (control) and 1% l-NAME were bilaterally administered to the forearm skin via transdermal iontophoresis. In protocol 1, 0.001% and 1% pilocarpine were iontophoretically administered at l-NAME-treated and untreated sites. In protocol 2, passive heating was applied by immersing the lower limbs in hot water (43 °C) until the rectal temperature increased by 0.8 °C above baseline. The sweat rate was continuously measured throughout both protocols. Pilocarpine-induced sweat rate was not significantly different between the control and l-NAME-treated sites in both pilocarpine concentrations (P ≥ 0.316 for the treatment effect and interaction of treatment and pilocarpine concentration). The sweat rate during passive heating was attenuated at the l-NAME-treated site relative to the control (treatment effect, P = 0.020). Notably, these observations are consistent with prior sweating studies administrating l-NAME into human skin using intradermal microdialysis techniques. Based on the similarity of our results with already known observations, we conclude that transdermal iontophoresis of l-NAME is a valid non-invasive technique for the investigation of the mechanisms of sweating related to NOS during heat stress.


Assuntos
Iontoforese , Sudorese , Feminino , Masculino , Adulto , Humanos , Administração Cutânea , NG-Nitroarginina Metil Éster/farmacologia , Pilocarpina/farmacologia , Resposta ao Choque Térmico
8.
Proc Natl Acad Sci U S A ; 117(16): 8958-8965, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253313

RESUMO

Olfaction and thermoregulation are key functions for mammals. The former is critical to feeding, mating, and predator avoidance behaviors, while the latter is essential for homeothermy. Aquatic and amphibious mammals face olfactory and thermoregulatory challenges not generally encountered by terrestrial species. In mammals, the nasal cavity houses a bony system supporting soft tissues and sensory organs implicated in either olfactory or thermoregulatory functions. It is hypothesized that to cope with aquatic environments, amphibious mammals have expanded their thermoregulatory capacity at the expense of their olfactory system. We investigated the evolutionary history of this potential trade-off using a comparative dataset of three-dimensional (3D) CT scans of 189 skulls, capturing 17 independent transitions from a strictly terrestrial to an amphibious lifestyle across small mammals (Afrosoricida, Eulipotyphla, and Rodentia). We identified rapid and repeated loss of olfactory capacities synchronously associated with gains in thermoregulatory capacity in amphibious taxa sampled from across mammalian phylogenetic diversity. Evolutionary models further reveal that these convergences result from faster rates of turbinal bone evolution and release of selective constraints on the thermoregulatory-olfaction trade-off in amphibious species. Lastly, we demonstrated that traits related to vital functions evolved faster to the optimum compared to traits that are not related to vital functions.


Assuntos
Evolução Biológica , Regulação da Temperatura Corporal/fisiologia , Mamíferos/fisiologia , Cavidade Nasal/fisiologia , Olfato/fisiologia , Animais , Imageamento Tridimensional , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/diagnóstico por imagem , Filogenia , Natação/fisiologia , Tomografia Computadorizada por Raios X , Conchas Nasais/anatomia & histologia , Conchas Nasais/diagnóstico por imagem , Conchas Nasais/fisiologia
9.
J Dairy Sci ; 106(3): 2035-2043, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36631318

RESUMO

The effects of ambient temperature (AT) on total evaporative water loss from dairy cows at different relative humidity (RH) and air velocity (AV) levels were studied. Twenty Holstein dairy cows with an average parity of 2.0 ± 0.7 and body weight of 687 ± 46 kg participated in the study. Two climate-controlled respiration chambers were used. The experimental indoor climate was programmed to follow a diurnal pattern with AT at night being 9°C lower than during the day. Night AT was gradually increased from 7 to 21°C and day AT was increased from 16°C to 30°C within an 8-d period, both with an incremental change of 2°C/d. The effect of 3 RH levels with a diurnal pattern were studied as well, with low values during the day and high values during the night: low (day, 30%; night, 50%), medium (day, 45%; night, 70%), and high (day, 60%; night, 90%). The effects of AV were studied during the daytime at 3 levels: no fan (0.1 m/s), fan at medium speed (1.0 m/s), and fan at high speed (1.5 m/s). The medium and high AV levels were only combined with medium RH. In total, there were 5 treatments with 4 replicates each. The animals had free access to feed and water. Based on the water balance principle inside the respiration chambers, the total evaporative water loss from dairy cows at a daily level was quantified by measuring the mass of water in the incoming and outgoing air, condensed water, added water from a humidifier, and evaporative water from a wet floor, drinking bowl, manure reservoir, and water bucket. Water evaporation from a sample skin area was measured with a ventilated skin box, and water evaporation, through respiration with a face mask. The results show that RH/AV levels had no significant effect on total evaporative water loss, whereas the interaction effect between RH/AV with AT was significant. Cows at a high RH had a tendency for a lower increasing rate of evaporative water loss compared with cows at a low RH (0.61 vs. 0.79 kg/d per 1°C increase of AT). Cows at medium and high AV levels had a greater increasing rate than cows at low AV (0.91 and 0.95 vs. 0.71 kg/d per 1°C increase of AT, respectively). The increase of evaporative heat loss from dairy cows was mainly a result of the increase in evaporation (of sweat) from the skin. The skin water evaporation determined with the water balance method (less evaporation from respiration) and the ventilated skin box method showed no significant difference. The implication of this study is that cows at a high AT depend mainly on evaporative cooling from the skin. The ventilated skin box method, measuring only a small part of the skin during a short period during the day, can be a convenient and accurate way to determine the total cutaneous evaporative water loss from cows.


Assuntos
Temperatura Corporal , Lactação , Gravidez , Feminino , Bovinos , Animais , Água , Regulação da Temperatura Corporal , Temperatura Alta , Respiração , Umidade
10.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R326-R335, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170329

RESUMO

The objective of this study was 1) to examine pooled effects of hypertension on nitric oxide (NO)-dependent vasodilation during local heating across multiple nonglabrous skin regions, and 2) explore regional differences. Responses were compared between 14 participants with uncomplicated hypertension controlled with medication (7 females, 61 ± 6 yr) and 14 age-matched nonhypertensive controls (6 females; 60 ± 5 yr). Cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax), was assessed at the upper chest, abdomen, dorsal forearm, thigh, and lateral calf during local heating. Across all regions, local skin temperatures were simultaneously increased from 33°C to 42°C (1°C·10 s-1) and held until a stable heating plateau was achieved (∼40 min), followed by continuous infusion of 20 mM of NG-nitro-l-arginine methyl ester (l-NAME; ∼40 min) at all sites until a stable l-NAME plateau was achieved. The difference between heating and l-NAME plateaus was defined as the NO-contribution. Statistical equivalence for each heating phase was determined based on equivalence bounds of ±10%CVCmax for between-group differences. Pooled (all-regions) %CVCmax responses were equivalent for baseline (two one-sided t tests; P < 0.001), heating plateau (P = 0.002), l-NAME plateau (P = 0.028), and NO-contribution (P = 0.003). For individual regions, responses were equivalent at baseline for the abdomen, thigh, and calf, the heating plateau for the thigh, and the l-NAME plateau for the calf (all P < 0.05). Conversely, the calf heating plateau was lower in the hypertension group (t test; P < 0.05). Local heat-induced cutaneous vasodilation was statistically equivalent between individuals with uncomplicated, controlled hypertension, and nonhypertensive age-matched adults when pooled across multiple skin sites. Conversely, individual between-region comparisons were generally too variable to permit definitive conclusions.


Assuntos
Hipertensão , Vasodilatação , Adulto , Inibidores Enzimáticos/farmacologia , Feminino , Temperatura Alta , Humanos , Masculino , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea
11.
J Dairy Sci ; 105(8): 7061-7078, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688732

RESUMO

The focus of this study was to identify the effects of increasing ambient temperature (T) at different relative humidity (RH) and air velocity (AV) levels on heat loss from the skin surface and through respiration of dairy cows. Twenty Holstein dairy cows with an average parity of 2.0 ± 0.7 and body weight of 687 ± 46 kg participated in the study. Two climate-controlled respiration chambers were used. The experimental indoor climate was programmed to follow a diurnal pattern with ambient T at night being 9°C lower than during the day. Night ambient T was gradually increased from 7 to 21°C and day ambient T was increased from 16 to 30°C within an 8-d period, both with an incremental change of 2°C per day. A diurnal pattern for RH was created as well, with low values during the day and high values during the night (low: RH_l = 30-50%; medium: RH_m = 45-70%; and high: RH_h = 60-90%). The effects of AV were studied during daytime at 3 levels (no fan: AV_l = 0.1 m/s; fan at medium speed: AV_m = 1.0 m/s; and fan at high speed: AV_h = 1.5 m/s). The AV_m and AV_h were combined only with RH_m. In total, there were 5 treatments with 4 replicates (cows) for each. Effects of short and long exposure time to warm condition were evaluated by collecting data 2 times a day, in the morning (short: 1-h exposure time) and afternoon (long: 8-h exposure time). The cows were allowed to adapt to the experimental conditions during 3 d before the main 8-d experimental period. The cows had free access to feed and water. Sensible heat loss (SHL) and latent heat loss (LHL) from the skin surface were measured using a ventilated skin box placed on the belly of the cow. These heat losses from respiration were measured with a face mask covering the cow's nose and mouth. The results showed that skin SHL decreased with increasing ambient T and the decreasing rate was not affected by RH or AV. The average skin SHL, however, was higher under medium and high AV levels, whereas it was similar under different RH levels. The skin LHL increased with increasing ambient T. There was no effect of RH on the increasing rate of LHL with ambient T. A larger increasing rate of skin LHL with ambient T was observed at high AV level compared with the other levels. Both RH and AV had no significant effects on respiration SHL or LHL. The cows lost more skin sensible heat and total respiration heat under long exposure than short exposure. When ambient T was below 20°C the total LHL (skin + respiration) represented approx. 50% of total heat loss, whereas above 28°C the LHL accounted for more than 70% of the total heat loss. Respiration heat loss increased by 34 and 24% under short and long exposures when ambient T rose from 16 to 32°C.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Animais , Temperatura Corporal , Bovinos , Feminino , Umidade , Lactação , Gravidez , Respiração , Temperatura
12.
J Therm Biol ; 104: 103183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180962

RESUMO

The moult in southern elephant seals (Mirounga leonina) represents an especially energetically demanding period during which seals must maintain high skin temperature to facilitate complete replacement of body fur and upper dermis. In this study, heat flux from the body surface was measured on 18 moulting southern elephant seals to estimate metabolic heat loss in three different habitats (beach, wallow and vegetation). Temperature data loggers were also deployed on 10 southern elephant seals to monitor skin surface temperature. On average, heat loss of animals on the beach was greater than in wallows or vegetation, and greater in wallows than in vegetation. Heat loss across all habitats during the moult equated to 1.8 x resting metabolic rate (RMR). The greatest heat loss of animals was recorded in the beach habitat during the late moult, that represented 2.3 x RMR. Mass loss was 3.6 ± 0.3 kg day-1, resulting in changes in body condition as the moult progressed. As body condition declined, skin surface temperature also decreased, suggesting that as animals approached the end of the moult blood flow to the skin surface was no longer required for hair growth.


Assuntos
Regulação da Temperatura Corporal , Ecossistema , Muda/fisiologia , Focas Verdadeiras/fisiologia , Animais , Feminino , Masculino , Temperatura
13.
Undersea Hyperb Med ; 49(4): 459-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446291

RESUMO

Purpose: In a disabled submarine scenario, a pressurized rescue module (PRM) may be deployed to rescue survivors. If the PRM were to become disabled, conditions could become hot and humid exposing the occupants to heat stress. We tested the hypothesis that the rise in core temperature and fluid loss from sweating would increase with rising dry bulb temperature. Methods: Twelve males (age 22 ± 3 years; height 179 ± 7 cm; mass 77.4 ± 8.3 kg) completed this study. On three occasions, subjects were exposed to high humidity and either 28-, 32-, or 35˚C for six hours in a dry hyperbaric chamber pressurized to 6.1 msw. Changes in core temperature (Tc) and body mass were recorded and linear regression lines fit to estimate the predicted rise in Tc and loss of fluid from sweating. Results: Heart rate was higher in the 35°C condition compared to the 28°C and 32°C conditions. Tc was higher in the 32°C condition compared to 28°C and higher in 35°C compared to the 28˚°C and 32°C conditions. Projected fluid loss in all of the tested conditions could exceed 6% of body mass after 24 hours of exposure endangering the health of sailors in a DISSUB or disabled PRM. A fluid intake of 1.0 to 3.5 L would be required to limit dehydration to 2% or 4% of initial mass depending upon condition. Conclusions: Prolonged exposure to 35°C conditions under pressure results in uncompensable heat stress. 32°C and 35°C exposures were compensable under these conditions but further research is required to elucidate the effect of increased ambient pressure on thermoregulation.


Assuntos
Estatura , Regulação da Temperatura Corporal , Masculino , Humanos , Adulto Jovem , Adulto , Umidade , Frequência Cardíaca , Modelos Lineares
14.
Microvasc Res ; 133: 104096, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058899

RESUMO

OBJECTIVE: To examine the contributions of calcium-activated K+ (KCa) channels and nitric oxide synthase (NOS) to adenosine triphosphate (ATP)-induced cutaneous vasodilation in healthy older adults. METHODS: In eleven older adults (69 ± 2 years, 5 females), cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax) was assessed at four dorsal forearm skin sites that were continuously perfused with either 1) lactated Ringer solution (Control), 2) 50 mM tetraethylammonium (TEA, KCa channel blocker), 3) 10 mM Nω-nitro-L-arginine (L-NNA, NOS inhibitor), or 4) combined 50 mM TEA +10 mM L-NNA, via microdialysis. Local skin temperature was fixed at 33 °C at all sites with local heaters throughout the protocol while the cutaneous vasodilator response was assessed during coadministration of ATP (0.03, 0.3, 3, 30, 300 mM; 20 min per dose), followed by 50 mM sodium nitroprusside and local skin heating to 43 °C to achieve maximum vasodilation (20-30 min). RESULTS: Blockade of KCa channels blunted %CVCmax relative to Control from 0.3 to 300 mM ATP (All P < 0.05). A similar response was observed for the combined KCa channel blockade and NOS inhibition site from 3 to 300 mM ATP (All P < 0.05). Conversely, NOS inhibition alone did not influence %CVCmax across all ATP doses (All P > 0.05). CONCLUSION: In healthy older adults, KCa channels play an important role in modulating ATP-induced cutaneous vasodilation, while the NOS contribution to this response is negligible.


Assuntos
Trifosfato de Adenosina/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/metabolismo , Pele/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Fatores Etários , Idoso , Vasos Sanguíneos/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Microdiálise , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Transdução de Sinais
15.
Exp Dermatol ; 30(12): 1807-1813, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34114706

RESUMO

The venoarteriolar reflex (VAR) is a local mechanism by which vasoconstriction is mediated in response to venous congestion. This response may minimize tissue overperfusion, preventing capillary damage and oedema. Post-occlusive reactive hyperaemia (PORH) is used to assess microvascular function by performing a brief local arterial occlusion resulting in a subsequent rapid transient vasodilation. In the current study, we hypothesized that type 2 diabetes (T2D) attenuates VAR and PORH responses in forearm skin in vivo. In 11 healthy older adults (Control, 58 ± 8 years) and 13 older adults with controlled T2D (62 ± 10 years), cutaneous blood flow measured by laser-Doppler flowmetry was monitored following a 3-min venous occlusion of 45 mm Hg that elicited the VAR, followed by a 3-min recovery period and then a 5-min arterial occlusion of 240 mm Hg that induced PORH. Finally, sodium nitroprusside, a nitric oxide donor, was administered to induce maximum vasodilation. VAR and PORH variables were similar between groups. By contrast, maximal cutaneous blood flow induced by sodium nitroprusside was lower in the T2D group. Taken together, our observations indicate that T2D impairs vascular smooth muscle responsiveness to nitric oxide, but not VAR and PORH in forearm skin.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Hiperemia/fisiopatologia , Óxido Nítrico/farmacologia , Reflexo , Pele/fisiopatologia , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Feminino , Antebraço , Humanos , Fluxometria por Laser-Doppler , Masculino , Pessoa de Meia-Idade , Fluxo Pulsátil
16.
Exp Physiol ; 106(8): 1671-1678, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143517

RESUMO

NEW FINDINGS: What is the central question of this study? Are regional differences in nitric oxide (NO)-dependent cutaneous vasodilatation during local skin heating present in young adults? What is the main finding and its importance? NO-dependent cutaneous vasodilatation varied across the body. The abdomen demonstrated larger NO contributions, while the chest demonstrated smaller NO contributions, compared to other regions. This exploratory work is an important first step in characterizing regional heterogeneity of cutaneous microvascular control across the torso and limbs. Equally, it serves to generate hypotheses for future studies examining regional cutaneous microvascular control in ageing and disease. ABSTRACT: Regional variations in cutaneous vasodilatation during local skin heating exist across the body. While nitric oxide (NO) is a well-known modulator of this response, the extent of regional differences in NO-dependent cutaneous vasodilatation during local skin heating remains uncertain. In 16 habitually active young adults (8 females; 25 ± 5 years), cutaneous vascular conductance, normalized to maximum vasodilatation (% CVCmax ), was assessed at the upper chest, abdomen, dorsal forearm, thigh and lateral calf during local skin heating. Across all regions, local skin temperatures were simultaneously increased from 33 to 42°C (1°C per 10 s), and held until a stable heating plateau was achieved (∼40 min). Next, with local skin temperature maintained at 42°C, 20 mM of NG -nitro-l-arginine methyl ester (l-NAME) was continuously infused at each site until a stable l-NAME plateau was achieved (∼40 min). The difference between heating and l-NAME plateaus was identified as the NO contribution for each region. There was no evidence for region-specific responses at baseline (P = 0.561), the heating plateau (P = 0.351) or l-NAME plateau (P = 0.082), but there was for the NO contribution (P = 0.048). Overall, point estimates for between-region differences in the NO contribution varied across the body from 0 to 19% CVCmax . The greatest effects were observed for the abdomen, wherein the NO contribution was consistently greater than for the other regions (range: 9-19% CVCmax ). The chest was consistently lower than the other regions (range: 7-19% CVCmax ). The smallest effects were observed between limb regions (range: 0-2% CVCmax ). These findings advance our understanding of the mechanisms influencing regional variations in the cutaneous vasodilator response to local skin heating in young adults.


Assuntos
Óxido Nítrico , Vasodilatação , Feminino , Calefação , Humanos , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/fisiologia , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Fenômenos Fisiológicos da Pele , Vasodilatação/fisiologia , Adulto Jovem
17.
Exp Physiol ; 106(7): 1508-1523, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899281

RESUMO

NEW FINDINGS: What is the central question of this study? Do sex and menstrual cycle modulate sweating during isometric handgrip exercise and muscle metaboreceptor stimulation? What is the main finding and its importance? Sex modulates sweating during isometric handgrip exercise, as indicated by the lower sweat output per gland in women than in men, but not during muscle metaboreceptor stimulation. Sweat output per gland during isometric handgrip exercise and muscle metaboreceptor stimulation were lower in the mid-luteal phase than in the early follicular phase in women. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response. Our results provide new insights regarding sex- and menstrual cycle-related modulation of the sweating response. ABSTRACT: We investigated whether sex and menstrual cycle could modulate sweating during isometric handgrip (IH) exercise and muscle metaboreceptor stimulation. Twelve young, healthy women in the early follicular (EF) and mid-luteal (ML) phases and 14 men underwent two experimental sessions consisting of a 1.5 min IH exercise at 25 and 50% of maximal voluntary contraction (MVC) in a hot environment (35°C, relative humidity 50%) followed by 2 min forearm occlusion to stimulate muscle metaboreceptors. Sweat rates, the number of activated sweat glands and the sweat output per gland (SGO) on the forearm and chest were assessed. Pilocarpine-induced sweating was also assessed via transdermal iontophoresis to compare the responses with those of IH exercise and muscle metaboreceptor stimulation, based on correlation analysis. Sweat rates on the forearm and chest during IH exercise and muscle metaboreceptor stimulation did not differ between men and women in either menstrual cycle phase (all P ≥ 0.144). However, women in both phases showed lower SGO on the forearm and/or chest compared with men during IH exercise at 50% of MVC, with no differences in muscle metaboreceptor stimulation. Women in the ML phase had a lower forearm sweat rate during IH exercise at 50% of MVC (P = 0.015) and SGO during exercise and muscle metaboreceptor stimulation (main effect, both P ≤ 0.003) compared with those in the EF phase. Overall, sweat rate and SGO during IH exercise and muscle metaboreceptor stimulation were correlated with pilocarpine-induced responses (all P ≤ 0.064, r ≥ 0.303). We showed that sex and menstrual cycle modulate sudomotor activity during IH exercise and/or muscle metaboreceptor stimulation. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response.


Assuntos
Antebraço , Sudorese , Exercício Físico/fisiologia , Feminino , Antebraço/fisiologia , Força da Mão/fisiologia , Humanos , Masculino , Ciclo Menstrual
18.
Exp Physiol ; 106(7): 1498-1507, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938053

RESUMO

NEW FINDINGS: What is the central question of this study? Does a 35-day horizontal bedrest impair thermoeffector responses during whole-body submaximal exercise performed in temperate conditions? What is the main finding and its importance? Cardiovascular and muscular deconditioning ensuing from prolonged recumbency seems to augment, at least to a degree, exercise-induced increase in body core temperature, most likely due to an impairment in non-evaporative heat loss. The response is a function of the absolute exercise intensity imposed. ABSTRACT: We examined the effects of a 35-day horizontal bedrest on thermoregulation during whole-body exercise. Fifteen healthy men were randomly assigned to either a bedrest (BR; n = 10) or a control (CON; n = 5) group. Prior to bedrest, both groups performed 40-min constant-load upright cycling at 30% of their peak workload (Wpeak ; PRE). One and 2 days after bedrest, the BR group performed, in a randomised counterbalanced order, two 40-min trials at 30% of (i) the pre-bedrest Wpeak (i.e., at a fixed absolute intensity; POST-A) and (ii) the post-bedrest Wpeak (i.e., at a fixed relative intensity; POST-R). The CON group conducted only the POST-A trial, at the same time intervals. During the trials, rectal (Trec ) and skin ( T¯sk ) temperatures, and the forehead sweating rate (SwR) were monitored. In the CON group, no differences were observed between the trials. Bedrest potentiated moderately the Trec elevation during the latter part of POST-A (∼0.10°C; P ≤ 0.05), but not of POST-R (∼0.04°C; P = 0.11). In both post-bedrest trials, T¯sk was attenuated by ∼1.5-2.0°C throughout (P < 0.01), whereas the forehead SwR was not modulated. Trec and T¯sk were similar in POST-A and POST-R, yet the forehead SwR was more dependent on the relative workload imposed (P = 0.04). The present findings therefore suggest that the cardiovascular and muscular deconditioning ensuing from a 35-day bedrest may aggravate the exercise-induced increase in body core temperature when working at a given absolute intensity, most likely due to an impairment in non-evaporative heat loss.


Assuntos
Repouso em Cama , Temperatura Corporal , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Temperatura Alta , Humanos , Masculino , Temperatura Cutânea , Sudorese , Temperatura
19.
J Exp Biol ; 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758021

RESUMO

The brainstem region medullary raphe modulates non-shivering and shivering thermogenesis and cutaneous vasomotion in rodents. Whether the same scenario occurs in the other endothermic group, i.e. birds, is still unknown. Therefore, we hypothesised that the medullary raphe modulates heat gain and loss thermoeffectors in birds. We investigated the effect of glutamatergic and GABAergic inhibitions in this specific region on body temperature (Tb), oxygen consumption (thermogenesis), ventilation (O2 supply in cold, thermal tachypnea in heat) and heat loss index (cutaneous vasomotion) in one-week-old chicken exposed to neutral (31°C), cold (26°C) and heat (36°C) conditions. Intra-medullary raphe antagonism of NMDA glutamate (AP5; 0.5, 5 mM) and GABAA (bicuculline; 0.05, 0.5 mM) receptors reduced Tb of chicks at 31°C and 26oC, due mainly to an O2 consumption decrease. AP5 transiently increased breathing frequency during cold exposure. At 31°C, heat loss index was higher in the bicuculline and AP5 groups (higher doses) than vehicle at the beginning of the Tb reduction. No treatment affected any variable tested at 36oC. The results suggest that glutamatergic and GABAergic excitatory influences on the medullary raphe of chicks modulate thermogenesis and glutamatergic stimulation prevents tachypnea, without having any role in warmth-defence responses. A double excitation influence on the medullary raphe may provide a protective neural mechanism for supporting thermogenesis during early life, when energy expenditure to support growth and homeothermy is high. This novel demonstration of a thermoregulatory role for the raphe in birds suggests a convergent brainstem neurochemical regulation of body temperature in endotherms.

20.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206718

RESUMO

Heat loss quantification (HLQ) is an essential step in improving a building's thermal performance and optimizing its energy usage. While this problem is well-studied in the literature, most of the existing studies are either qualitative or minimally driven quantitative studies that rely on localized building envelope points and are, thus, not suitable for automated solutions in energy audit applications. This research work is an attempt to fill this gap of knowledge by utilizing intensive thermal data (on the order of 100,000 plus images) and constitutes a relatively new area of analysis in energy audit applications. Specifically, we demonstrate a novel process using deep-learning methods to segment more than 100,000 thermal images collected from an unmanned aerial system (UAS). To quantify the heat loss for a building envelope, multiple stages of computations need to be performed: object detection (using Mask-RCNN/Faster R-CNN), estimating the surface temperature (using two clustering methods), and finally calculating the overall heat transfer coefficient (e.g., the U-value). The proposed model was applied to eleven academic campuses across the state of North Dakota. The preliminary findings indicate that Mask R-CNN outperformed other instance segmentation models with an mIOU of 73% for facades, 55% for windows, 67% for roofs, 24% for doors, and 11% for HVACs. Two clustering methods, namely K-means and threshold-based clustering (TBC), were deployed to estimate surface temperatures with TBC providing consistent estimates across all times of the day over K-means. Our analysis demonstrated that thermal efficiency not only depended on the accurate acquisition of thermal images but also relied on other factors, such as the building geometry and seasonal weather parameters, such as the outside/inside building temperatures, wind, time of day, and indoor heating/cooling conditions. Finally, the resultant U-values of various building envelopes were compared with recommendations from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) building standards.


Assuntos
Ar Condicionado , Ambiente Construído , Análise por Conglomerados , Calefação , North Dakota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA