Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 38(6): 2619-2640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488455

RESUMO

Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.


Assuntos
Isquemia Encefálica , Fator Neurotrófico Derivado do Encéfalo , Glucosídeos , Proteínas de Choque Térmico HSC70 , Infarto da Artéria Cerebral Média , Neurogênese , Fármacos Neuroprotetores , Fenóis , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Fenóis/farmacologia , Fenóis/química , Glucosídeos/farmacologia , Neurogênese/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Isquemia Encefálica/tratamento farmacológico , Proteínas de Choque Térmico HSC70/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Duplacortina , Rhodiola/química , Receptor trkB/metabolismo , Modelos Animais de Doenças , Azepinas , Benzamidas
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39126000

RESUMO

Ageing populations, mass "baby-free" policies and children born to mothers at the age at which they are biologically expected to become grandmothers are growing problems in most developed societies. Therefore, any opportunity to improve the quality of infertility treatments seems important for the survival of societies. The possibility of indirectly studying the quality of developing oocytes by examining their follicular fluids (hFFs) offers new opportunities for progress in our understanding the processes of final oocyte maturation and, consequently, for predicting the quality of the resulting embryos and personalising their culture. Using mass spectrometry, we studied follicular fluids collected individually during in vitro fertilisation and compared their composition with the quality of the resulting embryos. We analysed 110 follicular fluids from 50 oocyte donors, from which we obtained 44 high-quality, 39 medium-quality, and 27 low-quality embryos. We identified 2182 proteins by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) using a TripleTOF 5600+ hybrid mass spectrometer, of which 484 were suitable for quantification. We were able to identify several proteins whose concentrations varied between the follicular fluids of different oocytes from the same patient and between patients. Among them, the most important appear to be immunoglobulin heavy constant alpha 1 (IgA1hc) and dickkopf-related protein 3. The first one is found at higher concentrations in hFFs from which oocytes develop into poor-quality embryos, the other one exhibits the opposite pattern. None of these have, so far, had any specific links to fertility disorders. In light of these findings, these proteins should be considered a primary target for research aimed at developing a diagnostic tool for oocyte quality control and pre-fertilisation screening. This is particularly important in cases where the fertilisation of each egg is not an option for ethical or other reasons, or in countries where it is prohibited by law.


Assuntos
Biomarcadores , Desenvolvimento Embrionário , Líquido Folicular , Oócitos , Proteômica , Líquido Folicular/metabolismo , Líquido Folicular/química , Humanos , Feminino , Proteômica/métodos , Oócitos/metabolismo , Biomarcadores/metabolismo , Fertilização in vitro , Adulto , Proteoma/metabolismo , Proteoma/análise , Espectrometria de Massas/métodos
3.
Rheumatology (Oxford) ; 61(7): 2969-2977, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34791087

RESUMO

OBJECTIVES: JDM is an inflammatory myopathy characterized by prominent vasculopathy. AECAs are frequently detected in inflammatory and autoimmune diseases. We sought to determine whether AECAs correlate with clinical features of JDM, and thus serve as biomarkers to guide therapy or predict outcome. METHODS: Plasma samples from 63 patients with JDM, 49 patients with polyarticular JIA and 40 juvenile healthy controls were used to detect anti-heat shock cognate 71 kDa protein (HSC70) autoantibodies, a newly identified AECA, in ELISA assays. Clinical features were compared between JDM patients with and without anti-HSC70 autoantibodies. RESULTS: Anti-HSC70 autoantibodies were detected in 35% of patients with JDM, in 0% of patients with JIA (P < 0.0001) and in 0% of healthy donors (P < 0.0001). Both the presence of cutaneous ulcers (59% vs 17%, P < 0.002) and the use of wheelchairs and/or assistive devices (64% vs 27%, P < 0.007) were strongly associated with anti-HSC70 autoantibodies in JDM. High scores on the severity of myositis damage measures at the time of measurement of anti-HSC70 autoantibodies and an increased number of hospitalizations were also associated with anti-HSC70 autoantibodies. Intravenous immunoglobulin therapy was used more often in anti-HSC70 autoantibody-positive patients. CONCLUSION: Anti-HCS70 autoantibodies are detected frequently in children with JDM and are novel myositis-associated autoantibodies correlating with disease severity.


Assuntos
Doenças Autoimunes , Dermatomiosite , Miosite , Úlcera Cutânea , Autoanticorpos , Criança , Humanos , Imunoglobulinas Intravenosas
4.
Mol Med Rep ; 29(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947174

RESUMO

The heat shock cognate 71 kDa protein (Hsc70) is a stress­inducible ATPase that can protect cells against harmful stimuli. Transient receptor potential vanilloid 1 (TRPV1) is a well­documented nociceptor. Notably, Hsc70 can inhibit TRPV1 expression and function, suggesting that Hsc70 may have pain regulation potential. However, the role of Hsc70 in stress­induced hyperalgesia remains unclear. In the present study, the participation of Hsc70 and its regulator microRNA (miR)­3120 were investigated in forced swim (FS) stress­induced mechanical hyperalgesia in rats in an inflammatory state. Complete Freund's adjuvant (CFA) hind paw injection was performed to induce inflammatory pain in rats (CFA rats). Furthermore, in FS + CFA rats, FS stress was performed for 3 days before CFA injection. The levels of Hsc70, miR­3120 and their downstream molecule TRPV1 were measured in the dorsal root ganglion (DRG) with western blotting, immunofluorescence, reverse transcription­quantitative polymerase chain reaction and fluorescence in situ hybridization. The results revealed that FS stress significantly exacerbated CFA­induced mechanical pain. Furthermore, CFA upregulated Hsc70 and TRPV1 expression, which was partially inhibited or further enhanced by FS stress, respectively. In FS + CFA rats, intrathecal injection of a lentiviral vector overexpressing Hsc70 (LV­Hsc70) could decrease TRPV1 expression and improve the mechanical pain. Additionally, the expression levels of miR­3120, a regulator of Hsc70, were markedly upregulated on day 3 following FS stress. Finally, miR­3120 was identified to be colocalized with Hsc70 and expressed in all sizes of DRG neurons. In CFA rats, DRG injection of miR­3120 agomir to induce overexpression of miR­3120 resulted in similar TRPV1 expression and behavioral changes as those caused by FS stress, which were abolished in the presence of LV­Hsc70. These findings suggested that miR­3120/Hsc70 may participate in FS stress­induced mechanical hyperalgesia in rats in an inflammatory state, possibly via disinhibiting TRPV1 expression in the DRG neurons.


Assuntos
Hiperalgesia , MicroRNAs , Animais , Ratos , Adjuvante de Freund/efeitos adversos , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/induzido quimicamente , Hibridização in Situ Fluorescente , Inflamação/induzido quimicamente , MicroRNAs/genética , MicroRNAs/metabolismo , Dor/genética , Dor/metabolismo , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo
5.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159216

RESUMO

Chaperone-mediated autophagy (CMA) is a separate type of lysosomal proteolysis, characterized by its selectivity of substrate proteins and direct translocation into lysosomes. Recent studies have declared the involvement of CMA in a variety of physiologic and pathologic situations involving the kidney, and it has emerged as a potential target for the treatment of kidney diseases. The role of CMA in kidney diseases is context-dependent and appears reciprocally with macroautophagy. Among the renal resident cells, the proximal tubule exhibits a high basal level of CMA activity, and restoration of CMA alleviates the aging-related tubular alternations. The level of CMA is up-regulated under conditions of oxidative stress, such as in acute kidney injury, while it is declined in chronic kidney disease and aging-related kidney diseases, leading to the accumulation of oxidized substrates. Suppressed CMA leads to the kidney hypertrophy in diabetes mellitus, and the increase of CMA contributes to the progress and chemoresistance in renal cell carcinoma. With the progress on the understanding of the cellular functions and uncovering the clinical scenario, the application of targeting CMA in the treatment of kidney diseases is expected.


Assuntos
Autofagia Mediada por Chaperonas , Nefropatias , Autofagia/fisiologia , Humanos , Nefropatias/metabolismo , Lisossomos/metabolismo
6.
Acta Pharm Sin B ; 11(10): 3015-3034, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729301

RESUMO

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.

7.
Cancer Lett ; 357(2): 602-11, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25527454

RESUMO

Nestin, a class VI intermediate filament, was first described as a neuronal stem/progenitor cell marker. We previously reported that knockdown of nestin expression in human glioblastoma cells suppresses cell proliferation, migration, and invasion. In the present study, we examined the effect of nestin on stemness, and identified molecules involved in modulating nestin function in glioblastoma cells. Nestin expression was shown to be higher in high-grade gliomas than in low-grade gliomas. Furthermore, compared with control cells, nestin short hairpin RNA (shRNA)-transfected glioblastoma cells exhibited reduced sphere formation, decreased expression of NANOG, N-cadherin, CD133, and Oct-4, and decreased tumor size in vivo. To examine the proteins regulated by nestin in glioblastomas, we carried out two-dimensional electrophoresis using nestin shRNA-transfected glioblastoma cells. As a result, nestin shRNA-transfected glioblastoma cells exhibited a decrease in the level of phosphorylation of heat shock cognate 71 kDa protein (HSC71; gene HSPA8). From immunoprecipitation experiments, we demonstrated the direct binding of nestin, HSC71, and cyclin D1 in vitro. Overexpression of nestin in glioblastoma cells increased cell growth, sphere formation, and cell invasion. Transfection with HSC71 siRNA restored nestin expression and cell behavior; therefore, HSC71 knockdown will interfere with enhanced tumorigenic properties of glioblastoma cells that ectopically overexpress nestin. We have demonstrated that HSC71 and nestin regulate each other's expression levels or patterns, and that cyclin D1 is located downstream of nestin and HSC71. In conclusion, nestin regulates stemness, cell growth, and invasion in glioblastoma cells through the alteration of HSC71. Inhibition of nestin and HSC71 may thus be a useful molecular target in the treatment of glioblastomas.


Assuntos
Glioblastoma/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Nestina/metabolismo , Processamento de Proteína Pós-Traducional , Células-Tronco/metabolismo , Antígeno AC133 , Animais , Antígenos CD/genética , Encéfalo/metabolismo , Encéfalo/patologia , Caderinas/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glicoproteínas/genética , Proteínas de Choque Térmico HSC70/genética , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos Endogâmicos NOD , Proteína Homeobox Nanog , Nestina/genética , Fator 3 de Transcrição de Octâmero/genética , Peptídeos/genética , Fenótipo , Proteômica/métodos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA