Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202415092, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290153

RESUMO

Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.

2.
Angew Chem Int Ed Engl ; 59(7): 2684-2687, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31802595

RESUMO

Visible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor. The induced helical superstructure containing the molecular switch with terminal iodo atoms exhibits visible-light-driven reversible unwinding, that is, a cholesteric-nematic phase transition. Interestingly, the molecular switch with terminal bromo atoms confers reversible handedness inversion to the helical superstructure upon irradiation with visible light of different wavelengths. This visible-light-driven, reversible handedness inversion, enabled by a halogen bond donor molecular switch, is unprecedented.

3.
ACS Appl Mater Interfaces ; 12(49): 55215-55222, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237715

RESUMO

Self-organized functional soft materials, enabled by specific chemical architectures, are currently attracting tremendous attention because of their stimuli-responsive attributes and applications in advanced technological devices. A novel axially chiral molecular switch containing two azo linkages and six terminal alkyl chains on two elongated rod-shaped wings, that exhibits superior solubility, high helical twisting power, and reversible photoisomerization in an achiral liquid crystal host, is synthesized and utilized in the development of a photoresponsive, self-organized helical superstructure, that is, cholesteric liquid crystal (CLC). The planar CLC adopts a standing helix (SH) configuration because of surface alignment layers on the substrates. This SH can be transitioned to a lying helix configuration, enabling tunable diffraction gratings under the application of electric field. Adjustment of the initial pitch of the planar CLC by photoirradiation yields the diffraction gratings with stripes either parallel or perpendicular to the rubbing direction upon the application of an appropriate electric field. Tunable beam steering along orthogonal directions has been demonstrated. Such tunable stimuli-responsive soft materials fabricated with artificial chiral switches show great potential in optics, photonics, and beyond.

4.
Adv Mater ; 30(26): e1800237, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29682817

RESUMO

Self-organized stimuli-responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self-organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well-defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA