Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell ; 176(1-2): 154-166.e13, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30595448

RESUMO

Primases have a fundamental role in DNA replication. They synthesize a primer that is then extended by DNA polymerases. Archaeoeukaryotic primases require for synthesis a catalytic and an accessory domain, the exact contribution of the latter being unresolved. For the pRN1 archaeal primase, this domain is a 115-amino acid helix bundle domain (HBD). Our structural investigations of this small HBD by liquid- and solid-state nuclear magnetic resonance (NMR) revealed that only the HBD binds the DNA template. DNA binding becomes sequence-specific after a major allosteric change in the HBD, triggered by the binding of two nucleotide triphosphates. The spatial proximity of the two nucleotides and the DNA template in the quaternary structure of the HBD strongly suggests that this small domain brings together the substrates to prepare the first catalytic step of primer synthesis. This efficient mechanism is likely general for all archaeoeukaryotic primases.


Assuntos
DNA Primase/metabolismo , DNA Primase/fisiologia , Primers do DNA/química , Animais , Sítios de Ligação , DNA , DNA Primase/ultraestrutura , Primers do DNA/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Nucleotídeos , Conformação Proteica , Elementos Estruturais de Proteínas/fisiologia
2.
Mol Cell ; 72(6): 985-998.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30415949

RESUMO

Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepatócitos/enzimologia , Insulina/metabolismo , Sirtuína 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Alostérica , Animais , Sítios de Ligação , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HCT116 , Hepatócitos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Sirtuína 1/genética , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética
3.
Proc Natl Acad Sci U S A ; 120(38): e2218281120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695900

RESUMO

Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain of Escherichia coli (Δfes) to grow in iron-limited medium. Here, we describe the crystal structure of Syn-F4. Syn-F4 forms a dimeric 4-helix bundle. Each monomer comprises two long α-helices, and the loops of the Syn-F4 dimer are on the same end of the bundle (syn topology). Interestingly, there is a penetrated hole in the central region of the Syn-F4 structure. Extensive mutagenesis experiments in a previous study showed that five residues (Glu26, His74, Arg77, Lys78, and Arg85) were essential for enzymatic activity in vivo. All these residues are located around the hole in the central region of the Syn-F4 structure, suggesting a putative active site with a catalytic dyad (Glu26-His74). The complete inactivity of purified proteins with mutations at the five residues supports the putative active site and reaction mechanism. Molecular dynamics and docking simulations of the ferric enterobactin siderophore binding to the Syn-F4 structure demonstrate the dynamic property of the putative active site. The structure and active site of Syn-F4 are completely different from native enterobactin esterase enzymes, thereby demonstrating that proteins designed de novo can provide life-sustaining catalytic activities using structures and mechanisms dramatically different from those that arose in nature.


Assuntos
Enterobactina , Sideróforos , Ferro , Ferro da Dieta , Catálise , Eletrólitos , Escherichia coli/genética
4.
Proc Natl Acad Sci U S A ; 119(28): e2204161119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787052

RESUMO

The chemotaxis machinery of Escherichia coli has served as a model for exploring the molecular signaling mechanisms of transmembrane chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). Yet, fundamental questions about signal transmission through MCP molecules remain unanswered. Our work with the E. coli serine chemoreceptor Tsr has developed in vivo reporters that distinguish kinase-OFF and kinase-ON structures in the cytoplasmic methylation helix (MH) cap, which receives stimulus signals from an adjoining, membrane-proximal histidine kinase, adenylyl cyclases, MCPs, and phosphatases (HAMP) domain. The cytoplasmic helices of the Tsr homodimer interact mainly through packing interactions of hydrophobic residues at a and d heptad positions. We investigated the in vivo crosslinking properties of Tsr molecules bearing cysteine replacements at functionally tolerant g heptad positions in the N-terminal and C-terminal cap helices. Upon treatment of cells with bismaleimidoethane (BMOE), a bifunctional thiol-reagent, Tsr-G273C/Q504C readily formed a doubly crosslinked product in the presence of serine but not in its absence. Moreover, a serine stimulus combined with BMOE treatment during in vivo Förster resonance energy transfer-based kinase assays locked Tsr-G273C/Q504C in kinase-OFF output. An OFF-shifting lesion in MH1 (D269P) promoted the formation of the doubly crosslinked species in the absence of serine, whereas an ON-shifting lesion (G268P) suppressed the formation of the doubly crosslinked species. Tsr-G273C/Q504C also showed output-dependent crosslinking patterns in combination with ON-shifting and OFF-shifting adaptational modifications. Our results are consistent with a helix breathing-axial rotation-bundle repacking signaling mechanism and imply that in vivo crosslinking tools could serve to probe helix-packing transitions and their output consequences in other regions of the receptor molecule.


Assuntos
Escherichia coli , Proteínas Quimiotáticas Aceptoras de Metil/química , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Modelos Moleculares , Serina/metabolismo
5.
Proteins ; 92(2): 219-235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814578

RESUMO

Interleukin-4 (IL-4) is a hematopoietic cytokine composed by a four-helix bundle stabilized by an antiparallel beta-sheet and three disulfide bonds: Cys3-Cys127, Cys24-Cys65, and Cys46-Cys99. IL-4 is involved in several immune responses associated to infection, allergy, autoimmunity, and cancer. Besides its physiological relevance, IL-4 is often used as a "model" for protein design and engineering. Hence, to understand the role of each disulfide in the structure and dynamics of IL-4, we carried out several spectroscopic analyses (circular dichroism [CD], fluorescence, nuclear magnetic resonance [NMR]), and molecular dynamics (MD) simulations on wild-type IL-4 and four IL-4 disulfide mutants. All disulfide mutants showed loss of structure, altered interhelical angles, and looser core packings, showing that all disulfides are relevant for maintaining the overall fold and stability of the four-helix bundle motif, even at very low pH. In the absence of the disulfide connecting both protein termini Cys3-Cys127, C3T-IL4 showed a less packed protein core, loss of secondary structure (~9%) and fast motions on the sub-nanosecond time scale (lower S2 order parameters and larger τc correlation time), especially at the two protein termini, loops, beginning of helix A and end of helix D. In the absence of Cys24-Cys65, C24T-IL4 presented shorter alpha-helices (14% loss in helical content), altered interhelical angles, less propensity to form the small anti-parallel beta-sheet and increased dynamics. Simultaneously deprived of two disulfides (Cys3-Cys127 and Cys24-Cys65), IL-4 formed a partially folded "molten globule" with high 8-anilino-1-naphtalenesulphonic acid-binding affinity and considerable loss of secondary structure (~50%decrease), as shown by the far UV-CD, NMR, and MD data.


Assuntos
Dissulfetos , Interleucina-4 , Conformação Proteica , Interleucina-4/química , Dissulfetos/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Dicroísmo Circular
6.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928089

RESUMO

SARS-CoV-2 S-protein-mediated fusion is thought to involve the interaction of the membrane-distal or N-terminal heptad repeat (NHR) ("HR1") of the cleaved S2 segment of the protein and the membrane-proximal or C-terminal heptad repeat (CHR) ("HR2") regions of the protein. We examined the fusion inhibitory activity of a PEGylated HR2-derived peptide and its palmitoylated derivative using a pseudovirus infection assay. The latter peptide caused a 76% reduction in fusion activity at 10 µM. Our results suggest that small variations in peptide derivatization and differences in the membrane composition of pseudovirus preparations may affect the inhibitory potency of HR2-derived peptides. We suggest that future studies on the inhibition of infectivity of SARS-CoV-2 in both in vitro and in vivo systems consider the need for higher concentrations of peptide inhibitors.


Assuntos
Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Peptídeos/farmacologia , Peptídeos/química , Ácido Palmítico/farmacologia , Ácido Palmítico/química , Internalização do Vírus/efeitos dos fármacos , COVID-19/virologia , COVID-19/metabolismo , Antivirais/farmacologia , Antivirais/química
7.
J Med Virol ; 95(10): e29145, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37804480

RESUMO

Along with the long pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has come the dilemma of emerging viral variants of concern (VOC), particularly Omicron and its subvariants, able to deftly escape immune surveillance and the otherwise protective effect of current vaccines and antibody drugs. We previously identified a peptide-based pan-CoV fusion inhibitor, termed as EK1, able to bind the HR1 region in viral spike (S) protein S2 subunit. This effectively blocked formation of the six-helix bundle (6-HB) fusion core and, thus, showed efficacy against all human coronaviruses (HCoVs). EK1 is now in phase 3 clinical trials. However, the peptide drug generally lacks oral availability. Therefore, we herein performed a structure-based virtual screening of the libraries of biologically active molecules and identified nine candidate compounds. One is Navitoclax, an orally active anticancer drug by inhibition of Bcl-2. Like EK1 peptide, it could bind HR1 and block 6-HB formation, efficiently inhibiting fusion and infection of all SARS-CoV-2 variants tested, as well as SARS-CoV and MERS-CoV, with IC50 values ranging from 0.5 to 3.7 µM. These findings suggest that Navitoclax is a promising repurposed drug candidate for development as a safe and orally available broad-spectrum antiviral drug to combat the current SARS-CoV-2 and its variants, as well as other HCoVs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Reposicionamento de Medicamentos , Peptídeos , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(26): 15104-15111, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541044

RESUMO

Five small protein domains, the CC-domains, at the N terminus of the RECK protein, play essential roles in signaling by WNT7A and WNT7B in the context of central nervous system angiogenesis and blood-brain barrier formation and maintenance. We have determined the structure of CC domain 4 (CC4) at 1.65-Å resolution and find that it folds into a compact four-helix bundle with three disulfide bonds. The CC4 structure, together with homology modeling of CC1, reveals the surface locations of critical residues that were shown in previous mutagenesis studies to mediate GPR124 binding and WNT7A/WNT7B recognition and signaling. Surprisingly, sequence and structural homology searches reveal no other cell-surface or secreted domains in vertebrates that resemble the CC domain, a pattern that is in striking contrast to other ancient and similarly sized domains, such as Epidermal Growth Factor, Fibronectin Type 3, Immunoglobulin, and Thrombospondin type 1 domains, which are collectively present in hundreds of proteins.


Assuntos
Evolução Molecular , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas Ligadas por GPI/genética , Humanos , Camundongos , Domínios Proteicos , Alinhamento de Sequência
9.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762021

RESUMO

Although many protein structures have been determined at atomic resolution, the majority of them are static and represent only the most stable or averaged structures in solution. When a protein binds to its ligand, it usually undergoes fluctuation and changes its conformation. One attractive method for obtaining an accurate view of proteins in solution, which is required for applications such as the rational design of proteins and structure-based drug design, is diffracted X-ray tracking (DXT). DXT can detect the protein structural dynamics on a timeline via gold nanocrystals attached to the protein. Here, the structure dynamics of single-chain Fv antibodies, helix bundle-forming de novo designed proteins, and DNA-binding proteins in both ligand-unbound and ligand-bound states were analyzed using the DXT method. The resultant mean square angular displacements (MSD) curves in both the tilting and twisting directions clearly demonstrated that structural fluctuations were suppressed upon ligand binding, and the binding energies determined using the angular diffusion coefficients from the MSD agreed well with the binding thermodynamics determined using isothermal titration calorimetry. In addition, the size of gold nanocrystals is discussed, which is one of the technical concerns of DXT.


Assuntos
Proteínas de Ligação a DNA , Ouro , Raios X , Ligantes , Radiografia
10.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298729

RESUMO

We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.


Assuntos
COVID-19 , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Humanos , Lipopeptídeos/farmacologia , SARS-CoV-2 , Antirretrovirais , Proteína gp41 do Envelope de HIV , Inibidores da Fusão de HIV/farmacologia
11.
J Biol Chem ; 297(3): 101007, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324828

RESUMO

Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Organofosfatos/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Regulação Alostérica , Domínio Catalítico , Cromatografia em Gel , Microscopia Crioeletrônica , Dimerização , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Fosforilação , Espalhamento a Baixo Ângulo , Estereoisomerismo , Difração de Raios X
12.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430190

RESUMO

The pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to the world in many aspects. There is an urgent requirement for an effective preventive vaccine. The receptor binding domain (RBD), located on the spike (S) gene, is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor of host cells. The RBD protein is an effective and safe antigen candidate. The six-helix bundle (6HB) "molecular clamp" is a novel thermally-stable trimerization domain derived from a human immunodeficiency virus (HIV) gp41 protein segment. We selected the baculovirus system to fuse and express the RBD protein and 6HB for imitating the natural trimeric structure of RBD, named RBD-6HB. Recombinant RBD-6HB was successfully obtained from the cell culture supernatant and purified to high homogeneity. The purity of the final protein preparation was more than 97%. The results showed that the protein was identified as a homogeneous polymer. Further studies showed that the RBD-6HB protein combined with AL/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges. Our findings highlight the importance of trimerized SARS-CoV-2 S protein RBD in designing SARS-CoV-2 vaccines and provide a rationale for developing a protective vaccine through the induction of antibodies against the RBD domain.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Camundongos , Animais , Vacinas contra COVID-19 , Camundongos Endogâmicos BALB C , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos
13.
J Biol Inorg Chem ; 26(7): 855-862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487215

RESUMO

Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.


Assuntos
Cobre , Nitrito Redutases , Sítios de Ligação , Domínio Catalítico , Transporte de Elétrons , Nitrito Redutases/metabolismo
14.
Handb Exp Pharmacol ; 267: 277-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345939

RESUMO

For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos
15.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063760

RESUMO

Type III Secretion Systems (T3SSs) are multicomponent nanomachines located at the cell envelope of Gram-negative bacteria. Their main function is to transport bacterial proteins either extracellularly or directly into the eukaryotic host cell cytoplasm. Type III Secretion effectors (T3SEs), latest to be secreted T3S substrates, are destined to act at the eukaryotic host cell cytoplasm and occasionally at the nucleus, hijacking cellular processes through mimicking eukaryotic proteins. A broad range of functions is attributed to T3SEs, ranging from the manipulation of the host cell's metabolism for the benefit of the bacterium to bypassing the host's defense mechanisms. To perform this broad range of manipulations, T3SEs have evolved numerous novel folds that are compatible with some basic requirements: they should be able to easily unfold, pass through the narrow T3SS channel, and refold to an active form when on the other side. In this review, the various folds of T3SEs are presented with the emphasis placed on the functional and structural importance of α-helices and helical domains.


Assuntos
Conformação Proteica em alfa-Hélice/fisiologia , Sistemas de Secreção Tipo III/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/fisiologia , Sistemas de Secreção Tipo III/metabolismo
16.
J Mol Evol ; 88(4): 319-344, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189026

RESUMO

The polytopic helical membrane proteome is dominated by proteins containing seven transmembrane helices (7TMHs). They cannot be grouped under a monolithic fold or superfold. However, a parallel structural analysis of folds around that magic number of seven in distinct protein superfamilies (SWEET, PnuC, TRIC, FocA, Aquaporin, GPCRs) reveals a common homology, not in their structural fold, but in their systematic pseudo-symmetric construction during their evolution. Our analysis leads to guiding principles of intragenic duplication and pseudo-symmetric assembly of ancestral transmembrane helical protodomains, consisting of 3 (or 4) helices. A parallel deconstruction and reconstruction of these domains provides a structural and mechanistic framework for their evolutionary paths. It highlights the conformational plasticity inherent to fold formation itself, the role of structural as well as functional constraints in shaping that fold, and the usefulness of protodomains as a tool to probe convergent vs divergent evolution. In the case of FocA vs. Aquaporin, this protodomain analysis sheds new light on their potential divergent evolution at the protodomain level followed by duplication and parallel evolution of the two folds. GPCR domains, whose function does not seem to require symmetry, nevertheless exhibit structural pseudo-symmetry. Their construction follows the same protodomain assembly as any other pseudo-symmetric protein suggesting their potential evolutionary origins. Interestingly, all the 6/7/8TMH pseudo-symmetric folds in this study also assemble as oligomeric forms in the membrane, emphasizing the role of symmetry in evolution, revealing self-assembly and co-evolution not only at the protodomain level but also at the domain level.


Assuntos
Evolução Molecular , Proteínas de Membrana , Domínios Proteicos
17.
Artigo em Inglês | MEDLINE | ID: mdl-32081433

RESUMO

A sample of Apolipoprotein E3 used in the original structure determination by X-ray crystallography (PDB code 1NFN) was crystallized under different conditions and its structure determined by molecular replacement at 298° K. The original model (1NFN) began at amino acid 23 and ended at amino acid 164, but the amino acid segment 81 through 91 (a loop between helices) was not visible in the electron density and presumed disordered. The model reported here is essentially identical to 1NFN, but now includes amino acids 18 through 22 at the amino terminus, 165 at the carboxy terminus and includes as well the segment 83 through 91. Leu 82 is not visible, but the separation between Gln 81 and Thr 83 is more than 10 Å, thereby indicating a proteolytic cleavage occurred between those two residues.

18.
Biochem Biophys Res Commun ; 511(1): 1-6, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755302

RESUMO

DnaT is a replication restart primosomal protein required for re-initiating chromosomal DNA replication in bacteria. DnaT can be a monomer, dimer, trimer, tetramer, or pentamer. The oligomerization and disassembly of DnaT oligomers are critical in primosome assembly. Prior to this work, only the ssDNA-bound structure of the pentameric DnaT truncated protein (aa 84-153; DnaT84-153) was available. The mechanism by which DnaT oligomerizes as different states is unclear. In this paper, we report the crystal structure of the C-terminal domain of DnaT (aa 84-179; DnaTc) at 2.30 Šresolution (PDB entry 6AEQ). DnaTc forms a dimer both in the crystalline state and in solution. As compared with the ssDNA-bound structure of the pentameric DnaT84-153, their subunit-subunit interfaces significantly differ. The different oligomeric architecture suggests a strong conformational change possibly induced by ssDNA. Superposition analysis further indicated that the monomer of a DnaTc dimer shifted away by a distance of 7.5 Šand rotated by an angle of 170° for binding to ssDNA. Basing from these molecular evidence, we discussed and proposed a working model to explain how DnaTc oligomerizes through residue R146 mediation.


Assuntos
Proteínas de Bactérias/química , Salmonella typhimurium/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Infecções por Salmonella/microbiologia
19.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321334

RESUMO

SC29EK is an electronically constrained α-helical peptide HIV-1 fusion inhibitor that is highly effective against both wild-type and enfuvirtide (T20)-resistant viruses. In this study, we focused on investigating the mechanism of HIV-1 resistance to SC29EK by two approaches. First, SC29EK-escaping HIV-1 variants were selected and characterized. Three mutant viruses, which possessed two (N43K/E49A) or three (Q39R/N43K/N126K and N43K/E49A/N126K) amino acid substitutions in the N- and C-terminal repeat regions of gp41 were identified as conferring high resistance to SC29EK and cross-resistance to the first-generation (T20 and C34) and newly designed (sifuvirtide, MT-SC29EK, and 2P23) fusion inhibitors. The resistance mutations could reduce the binding stability of SC29EK, impair viral Env-mediated cell fusion and entry, and change the conformation of the gp41 core structure. Further, we determined the crystal structure of SC29EK in complex with a target mimic peptide, which revealed the critical intra- and interhelical interactions underlying the mode of action of SC29EK and the genetic pathway to HIV-1 resistance. Taken together, the present data provide new insights into the structure and function of gp41 and the structure-activity relationship (SAR) of viral fusion inhibitors.IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection, but it has relatively low anti-HIV activity and genetic barriers for resistance, thus calling for new drugs blocking the viral fusion process. As an electronically constrained α-helical peptide, SC29EK is highly potent against both wild-type and T20-resistant HIV-1 strains. Here, we report the characterization of HIV-1 variants resistant to SC29EK and the crystal structure of SC29EK. The key mutations mediating high resistance to SC29EK and cross-resistance to the first and new generations of fusion inhibitors as well as the underlying mechanisms were identified. The crystal structure of SC29EK bound to a target mimic peptide further revealed its action mode and genetic pathway to inducing resistance. Hence, our data have shed new lights on the mechanisms of HIV-1 fusion and its inhibition.


Assuntos
Farmacorresistência Viral/genética , Proteína gp41 do Envelope de HIV , Inibidores da Fusão de HIV/farmacologia , HIV-1 , Mutação de Sentido Incorreto , Peptídeos/farmacologia , Substituição de Aminoácidos , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , HIV-1/genética , HIV-1/metabolismo , Humanos , Peptídeos/química , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 113(50): E8031-E8040, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911771

RESUMO

Synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary target (t)-SNARE complex on the target plasma membrane, which then zippers with the vesicle (v)-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds, and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled the synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed C terminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT, where kB is the Boltzmann constant and T is 300 K. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by the mammalian uncoordinated-18-1 protein (Munc18-1). The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional t-SNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acted as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission.


Assuntos
Proteínas SNARE/química , Sequência de Aminoácidos , Animais , Fusão de Membrana , Camundongos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Proteínas Munc18/química , Proteínas Munc18/fisiologia , Pinças Ópticas , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/fisiologia , Transmissão Sináptica/fisiologia , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/fisiologia , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA