Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 120(3): 307-323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487601

RESUMO

Bacteria frequently store excess carbon in hydrophobic granules of polyhydroxybutyrate (PHB) that in some growth conditions can occupy most of the cytoplasmic space. Different types of proteins associate to the surface of the granules, mainly enzymes involved in the synthesis and utilization of the reserve polymer and a diverse group of proteins known as phasins. Phasins have different functions, among which are regulating the size and number of the granules, modulating the activity of the granule-associated enzymes and helping in the distribution of the granules inside the cell. Caulobacter crescentus is an oligotrophic bacterium that shows several morphological and regulatory traits that allow it to grow in very nutrient-diluted environments. Under these conditions, storage compounds should be particularly relevant for survival. In this work, we show an initial proteomic characterization of the PHB granules and describe a new type of phasin (PhaH) characterized by the presence of an N-terminal hydrophobic helix followed by a helix-hairpin-helix (HhH) domain. The hydrophobic helix is required for maximal PHB accumulation and maintenance during the stationary phase while the HhH domain is involved in determining the size of the PHB granules and their distribution in the cell.


Assuntos
Caulobacter crescentus , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(27): 15731-15739, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561643

RESUMO

De novo emergence demands a transition from disordered polypeptides into structured proteins with well-defined functions. However, can polypeptides confer functions of evolutionary relevance, and how might such polypeptides evolve into modern proteins? The earliest proteins present an even greater challenge, as they were likely based on abiotic, spontaneously synthesized amino acids. Here we asked whether a primordial function, such as nucleic acid binding, could emerge with ornithine, a basic amino acid that forms abiotically yet is absent in modern-day proteins. We combined ancestral sequence reconstruction and empiric deconstruction to unravel a gradual evolutionary trajectory leading from a polypeptide to a ubiquitous nucleic acid-binding protein. Intermediates along this trajectory comprise sequence-duplicated functional proteins built from 10 amino acid types, with ornithine as the only basic amino acid. Ornithine side chains were further modified into arginine by an abiotic chemical reaction, improving both structure and function. Along this trajectory, function evolved from phase separation with RNA (coacervates) to avid and specific double-stranded DNA binding. Our results suggest that phase-separating polypeptides may have been an evolutionary resource for the emergence of early proteins, and that ornithine, together with its postsynthesis modification to arginine, could have been the earliest basic amino acids.


Assuntos
Arginina/química , Nucleoproteínas/genética , Ornitina/química , Peptídeos/genética , Sequência de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Arginina/genética , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Nucleoproteínas/química , Ornitina/genética , Peptídeos/química , Proteínas/química , Proteínas/genética , RNA/química , RNA/genética
3.
J Biol Chem ; 292(7): 2842-2853, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28028171

RESUMO

The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/química , Dimerização , Sequências Hélice-Alça-Hélice , Humanos , Ligação Proteica , Especificidade por Substrato
4.
J Mol Biol ; 433(15): 167097, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34107280

RESUMO

DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2'-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.


Assuntos
DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Pseudouridina/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X , DNA/química , Endodesoxirribonucleases/genética , Epigênese Genética , Humanos , Modelos Moleculares , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA