Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.407
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(26): e2306318120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307435

RESUMO

Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1ß secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.


Assuntos
Hemeproteínas , Malária Cerebral , Malária Falciparum , Animais , Camundongos , Histidina , Células Endoteliais , Inflamação , Heme , Ferro
2.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432636

RESUMO

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Assuntos
Fenômenos Fisiológicos Celulares , Heme , Animais , Humanos , Ritmo Circadiano/fisiologia , Heme/metabolismo , Hemeproteínas/metabolismo , Oxirredução , Transdução de Sinais , Espaço Intracelular/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia
3.
EMBO J ; 40(17): e108083, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34254350

RESUMO

Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a "kiss-and-go" mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.


Assuntos
Proteínas Fúngicas/biossíntese , Mitocôndrias/metabolismo , Fitocromo/biossíntese , Alternaria , Proteínas Fúngicas/genética , Heme/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fitocromo/genética , Transporte Proteico
4.
Plant Physiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805221

RESUMO

Heme, an organometallic tetrapyrrole, is widely engaged in oxygen transport, electron delivery, enzymatic reactions, and signal transduction. In plants, it is also involved in photomorphogenesis and photosynthesis. HEME OXYGENASE 1 (HO1) initiates the first committed step in heme catabolism, and it has generally been thought that this reaction takes place in chloroplasts. Here, we show that HO1 in both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) has two transcription start sites (TSSs), producing long (HO1L) and short (HO1S) transcripts. Their products localize to the chloroplast and the cytosol, respectively. During early development or de-etiolation, the HO1L/HO1S ratio gradually increases. Light perception via phytochromes and cryptochromes elevates the HO1L/HO1S ratio in the whole seedling through the functions of ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) and through the suppression of DE-ETIOLATED 1 (DET1), CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), and PHYTOCHROME INTERACTING FACTORs (PIFs). HO1L introduction complements the HO1-deficient mutant; surprisingly, HO1S expression also restores the short hypocotyl phenotype and high pigment content and helps the mutant recover from the genomes uncoupled (gun) phenotype. This indicates the assembly of functional phytochromes within these lines. Furthermore, our findings support the hypothesis that a mobile heme signal is involved in retrograde signaling from the chloroplast. Altogether, our work clarifies the molecular mechanism of HO1 TSS regulation and highlights the presence of a cytosolic bypass for heme catabolism in plant cells.

5.
FASEB J ; 38(3): e23472, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329323

RESUMO

Allergic asthma development and pathogenesis are influenced by airway epithelial cells in response to allergens. Heme oxygenase-1 (HO-1), an inducible enzyme responsible for the breakdown of heme, has been considered an appealing target for the treatment of chronic inflammatory diseases. Herein, we report that alleviation of allergic airway inflammation by HO-1-mediated suppression of pyroptosis in airway epithelial cells (AECs). Using house dust mite (HDM)-induced asthma models of mice, we found increased gasdermin D (GSDMD) in the airway epithelium. In vivo administration of disulfiram, a specific inhibitor of pore formation by GSDMD, decreased thymic stromal lymphopoietin (TSLP) release, T helper type 2 immune response, alleviated airway inflammation, and reduced airway hyperresponsiveness (AHR). HO-1 induction by hemin administration reversed these phenotypes. In vitro studies revealed that HO-1 restrained GSDMD-mediated pyroptosis and cytokine TSLP release in AECs by binding Nuclear Factor-Kappa B (NF-κB) p65 RHD domain and thus controlling NF-κB-dependent pyroptosis. These data provide new therapeutic indications for purposing HO-1 to counteract inflammation, which contributes to allergic inflammation control.


Assuntos
Asma , Heme Oxigenase-1 , NF-kappa B , Animais , Camundongos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Piroptose , Linfopoietina do Estroma do Timo
6.
FASEB J ; 38(10): e23691, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780525

RESUMO

Heme is a prosthetic group of proteins involved in vital physiological processes. It participates, for example, in redox reactions crucial for cell metabolism due to the variable oxidation state of its central iron atom. However, excessive heme can be cytotoxic due to its prooxidant properties. Therefore, the control of intracellular heme levels ensures the survival of organisms, especially those that deal with high concentrations of heme during their lives, such as hematophagous insects. The export of heme initially attributed to the feline leukemia virus C receptor (FLVCR) has recently been called into question, following the discovery of choline uptake by the same receptor in mammals. Here, we found that RpFLVCR is a heme exporter in the midgut of the hematophagous insect Rhodnius prolixus, a vector for Chagas disease. Silencing RpFLVCR decreased hemolymphatic heme levels and increased the levels of intracellular dicysteinyl-biliverdin, indicating heme retention inside midgut cells. FLVCR silencing led to increased expression of heme oxygenase (HO), ferritin, and mitoferrin mRNAs while downregulating the iron importers Malvolio 1 and 2. In contrast, HO gene silencing increased FLVCR and Malvolio expression and downregulated ferritin, revealing crosstalk between heme degradation/export and iron transport/storage pathways. Furthermore, RpFLVCR silencing strongly increased oxidant production and lipid peroxidation, reduced cytochrome c oxidase activity, and activated mitochondrial biogenesis, effects not observed in RpHO-silenced insects. These data support FLVCR function as a heme exporter, playing a pivotal role in heme/iron metabolism and maintenance of redox balance, especially in an organism adapted to face extremely high concentrations of heme.


Assuntos
Heme , Mitocôndrias , Oxirredução , Rhodnius , Animais , Heme/metabolismo , Rhodnius/metabolismo , Mitocôndrias/metabolismo , Receptores Virais/metabolismo , Receptores Virais/genética , Vírus da Leucemia Felina/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
7.
J Infect Dis ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723117

RESUMO

BACKGROUND: The latent TB infection (LTBI) is an asymptomatic infection caused by Mycobacterium tuberculosis (M.bt). Previous studies have shown a host-protective role for Heme oxygenase-1 (HO-1) during Mtb infection and an important involvement of Glutathione peroxidase-4 (Gpx4) in the necrotic pathology of the disease. Furthermore, increasing evidence suggested a crucial role for Glutathione in the granulomatous response to M. tb infection, with altered GSH levels associated to decreased host resistance. The aim of this study was to provide additional tools for discriminating the pathologic TB state and the asymptomatic infection. METHODS: We analyzed the gene expression of HO-1 and Gpx4 enzymes in blood of subjects with LTBI, active TB and healthy controls, and we also measured blood levels of the reduced (GSH) and oxidized (GSSG) forms of glutathione, together with the evaluation of GCL expression, the gene responsible for the GSH de novo synthesis. RESULTS: Our findings highlight a shift of glutathione homeostasis towards a more reducing conditions in LTBI, and a different modulation of GSH-dependent genes and HO-1 expression respect to active TB. CONCLUSION: This study can provide useful tools to understand the redox background that address the infection toward the asymptomatic or active disease.

8.
Crit Rev Biochem Mol Biol ; 57(1): 16-47, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34517731

RESUMO

Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbß, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.


Assuntos
Heme , Receptores Citoplasmáticos e Nucleares , Heme/química , Heme/metabolismo , Humanos , Oxirredução , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo
9.
J Cell Mol Med ; 28(7): e18243, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509740

RESUMO

Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.


Assuntos
Cardiomiopatias , Heme Oxigenase (Desciclizante) , Animais , Humanos , Peixe-Zebra/genética , Isoproterenol/farmacologia , Heme Oxigenase-1/genética , Miocárdio , Hipóxia , Miócitos Cardíacos
10.
J Biol Chem ; 299(5): 104648, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965616

RESUMO

IsdG-type enzymes catalyze the noncanonical degradation of heme to iron, staphylobilin (SB), and formaldehyde (HCHO), presumably by binding heme in an unusually distorted conformation. Their unique mechanism has been elucidated for MhuD from Mycobacterium tuberculosis, revealing an unusual ring opening of hydroxyheme by dioxygenation. A similar mechanism has been postulated for other IsdG enzymes; however, MhuD, which is special as an IsdG-type enzyme, retains a formyl group in the linearized tetrapyrrole. Recent reports on Staphylococcus aureus IsdG have suggested the formation of SB retaining a formyl group (formyl-SB), but its identification is preliminary. Furthermore, the reaction properties of formyl-SB and the mechanism of HCHO release remain unclear. In this study, the complex reaction of S. aureus IsdG was reexamined to elucidate its mechanism, including the identification of reaction products and their control mechanisms. Depending on the reaction conditions, IsdG produced both SB and formyl-SB as the main product, the latter of which was isolated and characterized by MS and NMR measurements. The formyl-SB product was generated upon the reaction between hydroxyheme-IsdG and O2 without reduction, indicating the dioxygenation mechanism as found for MhuD. Under reducing conditions, hydroxyheme-IsdG was converted also to SB and HCHO by activating another O2 molecule. These results provide the first overview of the complicated IsdG reaction. The heme distortion in the IsdG-type enzymes is shown to generally promote ring cleavage by dioxygenation. The presence or absence of HCHO release can be influenced by many factors, and the direct identification of S. aureus heme catabolites is of interest.


Assuntos
Formaldeído , Heme Oxigenase (Desciclizante) , Heme , Staphylococcus aureus , Catálise , Formaldeído/metabolismo , Heme/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Staphylococcus aureus/enzimologia , Mycobacterium tuberculosis/metabolismo
11.
J Cell Biochem ; 125(5): e30563, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591551

RESUMO

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Assuntos
Células Endoteliais , Glucose , Heme Oxigenase-1 , Miócitos de Músculo Liso , Espécies Reativas de Oxigênio , Estresse Mecânico , Humanos , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ativação Enzimática , Glucose/metabolismo , Glucose/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Molécula 1 de Adesão Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
12.
Antimicrob Agents Chemother ; 68(2): e0104323, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132181

RESUMO

Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDTs) offer a novel approach to TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that the inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here, we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO), in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P = 0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 colony-forming units (CFUs), a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P = 0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.


Assuntos
Metaloporfirinas , Mycobacterium tuberculosis , Protoporfirinas , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Camundongos , Metaloporfirinas/uso terapêutico , Heme Oxigenase-1 , Modelos Animais de Doenças , Antituberculosos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Recidiva
13.
Biochem Biophys Res Commun ; 694: 149405, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147696

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) is a silent but life-threatening cardiovascular disease. Heme oxygenase 1 (HO-1) plays an important role in the cardiovascular diseases but is poorly understood in TAA. This study aims at investigating the role of HO-1 in TAA. METHODS: Single-cell RNA sequencing, Western blot and histological assay were performed to identify specific cellular expression of HO-1 in both human and ß-aminopropionitrile (BAPN)-induced mice TAA. Zinc protoporphyrin (ZnPP), a pharmacological inhibitor of HO-1, was used to investigate whether inhibition of HO-1 could attenuate BAPN-induced TAA in rodent model. Histological assay, Western blot assay, and mRNA sequencing were further performed to explore the underlying mechanisms. RESULTS: Single-cell transcriptomic analyses of 113,800 thoracic aortic cells identified an increase of HO-1(+) macrophage in aneurysmal thoracic aorta from BAPN-induced TAA mice and TAA patients. Histological assay verified HO-1 overexpression in clinical TAA specimens, which was co-localized with CD68(+) macrophage. HO-1(+) macrophage was closely associated with pro-inflammatory response and immune activation. Inhibition of HO-1 through ZnPP significantly alleviated BAPN-induced TAA in mice and restored extracellular matrix (ECM) in vivo. Further experiments showed that ZnPP treatment suppressed the expression of matrix metalloproteinases (MMPs) in aneurysmal thoracic aortic tissues from BAPN-induced TAA mice, including MMP2 and MMP9. Macrophages from myeloid specific HO-1 knockout mice displayed weakened pro-inflammatory activity and ECM degradation capability. CONCLUSION: HO-1(+) macrophage subgroup is a typical hallmark of TAA. Inhibition of HO-1 through ZnPP alleviates BAPN-induced TAA in mice, which might work through restoration of ECM via suppressing MMP2 and MMP9 expression.


Assuntos
Aneurisma da Aorta Torácica , Metaloproteinase 2 da Matriz , Animais , Humanos , Camundongos , Aminopropionitrilo/efeitos adversos , Aminopropionitrilo/metabolismo , Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/genética , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Heme Oxigenase-1/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Knockout
14.
Pancreatology ; 24(3): 363-369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431445

RESUMO

OBJECTIVE: Hemin, a heme oxygenase 1 activator has shown efficacy in the prevention and treatment of acute pancreatitis in mouse models. We conducted a randomized controlled trial (RCT) to assess the protective effect of Hemin administration to prevent post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) in patients at risk. METHODS: In this multicenter, multinational, placebo-controlled, double-blind RCT, we assigned patients at risk for PEP to receive a single intravenous dose of Hemin (4 mg/kg) or placebo immediately after ERCP. Patients were considered to be at risk on the basis of validated patient- and/or procedure-related risk factors. Neither rectal NSAIDs nor pancreatic stent insertion were allowed in randomized patients. The primary outcome was the incidence of PEP. Secondary outcomes included lipase elevation, mortality, safety, and length of stay. RESULTS: A total of 282 of the 294 randomized patients had complete follow-up. Groups were similar in terms of clinical, laboratory, and technical risk factors for PEP. PEP occurred in 16 of 142 patients (11.3%) in the Hemin group and in 20 of 140 patients (14.3%) in the placebo group (p = 0.48). Incidence of severe PEP reached 0.7% and 4.3% in the Hemin and placebo groups, respectively (p = 0.07). Significant lipase elevation after ERCP did not differ between groups. Length of hospital stay, mortality and severe adverse events rates were similar between groups. CONCLUSION: We failed to detect large improvements in PEP rate among participants at risk for PEP who received IV hemin immediately after the procedure compared to placebo. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number, NCT01855841).


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Pancreatite , Animais , Humanos , Camundongos , Anti-Inflamatórios não Esteroides/uso terapêutico , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Heme Oxigenase-1 , Hemina/uso terapêutico , Lipase , Pancreatite/etiologia , Pancreatite/prevenção & controle , Administração Intravenosa
15.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37084167

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Assuntos
Colite Ulcerativa , Genisteína , Animais , Ratos , Genisteína/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Caspase 3 , Caspase 9 , Caspase 8 , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Proteína X Associada a bcl-2
16.
Fish Shellfish Immunol ; 151: 109703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878912

RESUMO

Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-ß), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1ß, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.


Assuntos
Aeromonas hydrophila , Ciclídeos , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Heme Oxigenase-1 , Imunidade Inata , Filogenia , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Aeromonas hydrophila/fisiologia , Imunidade Inata/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38940935

RESUMO

PURPOSE: Heme oxygenase-1 (HO-1) is a crucial enzyme in heme metabolism, facilitating the breakdown of heme into biliverdin, carbon monoxide, and free iron. Renowned for its potent cytoprotective properties, HO-1 showcases notable antioxidant, anti-inflammatory, and anti-apoptotic effects. In this review, the authors aim to explore the profound impact of HO-1 on cardiac senescence and its potential implications in myocardial infarction (MI). RESULTS: Recent research has unveiled the intricate role of HO-1 in cellular senescence, characterized by irreversible growth arrest and functional decline. Notably, cardiac senescence has emerged as a pivotal factor in the development of various cardiovascular conditions, including MI. Notably, cardiac senescence has emerged as an important factor in the development of various cardiovascular conditions, including myocardial infarction (MI). The accumulation of senescent cells, spanning vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, and progenitor cells, poses a significant risk for cardiovascular diseases such as vascular aging, atherosclerosis, myocardial infarction, and ventricular remodeling. Inhibition of cardiomyocyte senescence not only reduces senescence-associated inflammation but also impacts other myocardial lineages, hinting at a broader mechanism of propagation in pathological remodeling. HO-1 has been shown to improve heart function and mitigate cardiomyocyte senescence induced by ischemic injury and aging. Furthermore, HO-1 induction has been found to alleviate H2O2-induced cardiomyocyte senescence. As we grow in our understanding of antiproliferative, antiangiogenic, anti-aging, and vascular effects of HO-1, we see the potential to exploit potential links between individual susceptibility to cardiac senescence and myocardial infarction. CONCLUSIONS: This review investigates strategies for upregulating HO-1, including gene targeting and pharmacological agents, as potential therapeutic approaches. By synthesizing compelling evidence from diverse experimental models and clinical investigations, this study elucidates the therapeutic potential of targeting HO-1 as an innovative strategy to mitigate cardiac senescence and improve outcomes in myocardial infarction, emphasizing the need for further research in this field.

18.
J Enzyme Inhib Med Chem ; 39(1): 2337191, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38634597

RESUMO

Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias do Colo , Fluoruracila , Humanos , Masculino , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fluoruracila/farmacologia , Heme Oxigenase-1/antagonistas & inibidores
19.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975960

RESUMO

Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.


Assuntos
Pigmentos Biliares/fisiologia , Chlamydomonas reinhardtii/metabolismo , Clorofila/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Cianobactérias/metabolismo , Heme Oxigenase (Desciclizante) , Peptídeos e Proteínas de Sinalização Intracelular/química , Liases/metabolismo , Protoporfirinas/química
20.
Ecotoxicol Environ Saf ; 280: 116562, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850704

RESUMO

Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.


Assuntos
Diquat , Ferroptose , Heme Oxigenase-1 , Herbicidas , Espécies Reativas de Oxigênio , Espermatogônias , Testículo , Animais , Masculino , Ferroptose/efeitos dos fármacos , Camundongos , Espermatogônias/efeitos dos fármacos , Espermatogônias/patologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Testículo/efeitos dos fármacos , Testículo/patologia , Diquat/toxicidade , Herbicidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA