Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Brain ; 137(Pt 11): 2960-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154387

RESUMO

Cortical spreading depolarization causes a breakdown of electrochemical gradients following acute brain injury, and also elicits dynamic changes in regional cerebral blood flow that range from physiological neurovascular coupling (hyperaemia) to pathological inverse coupling (hypoperfusion). In this study, we determined whether pathological inverse neurovascular coupling occurred as a mechanism of secondary brain injury in 24 patients who underwent craniotomy for severe traumatic brain injury. After surgery, spreading depolarizations were monitored with subdural electrode strips and regional cerebral blood flow was measured with a parenchymal thermal diffusion probe. The status of cerebrovascular autoregulation was monitored as a correlation between blood pressure and regional cerebral blood flow. A total of 876 spreading depolarizations were recorded in 17 of 24 patients, but blood flow measurements were obtained for only 196 events because of technical limitations. Transient haemodynamic responses were observed in time-locked association with 82 of 196 (42%) spreading depolarizations in five patients. Spreading depolarizations induced only hyperaemic responses (794% increase) in one patient with intact cerebrovascular autoregulation; and only inverse responses (-24% decrease) in another patient with impaired autoregulation. In contrast, three patients exhibited dynamic changes in neurovascular coupling to depolarizations throughout the course of recordings. Severity of the pathological inverse response progressively increased (-14%, -29%, -79% decrease, P < 0.05) during progressive worsening of cerebrovascular autoregulation in one patient (Pearson coefficient 0.04, 0.14, 0.28, P < 0.05). A second patient showed transformation from physiological hyperaemic coupling (44% increase) to pathological inverse coupling (-30% decrease) (P < 0.05) coinciding with loss of autoregulation (Pearson coefficient 0.19 → 0.32, P < 0.05). The third patient exhibited a similar transformation in brain tissue oxygenation, a surrogate of blood flow, from physiologic hyperoxic responses (20% increase) to pathological hypoxic responses (-14% decrease, P < 0.05). Pathological inverse coupling was only observed with electrodes placed in or adjacent to evolving lesions. Overall, 31% of the pathological inverse responses occurred during ischaemia (<18 ml/100 g/min) thus exacerbating perfusion deficits. Average perfusion was significantly higher in patients with good 6-month outcomes (46.8 ± 6.5 ml/100 g/min) than those with poor outcomes (32.2 ± 3.7 ml/100 g/min, P < 0.05). These results establish inverse neurovascular coupling to spreading depolarization as a novel mechanism of secondary brain injury and suggest that cortical spreading depolarization, the neurovascular response, cerebrovascular autoregulation, and ischaemia are critical processes to monitor and target therapeutically in the management of acute brain injury.


Assuntos
Lesões Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Monitorização Fisiológica/métodos , Adulto , Idoso , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/cirurgia , Eletroencefalografia , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Adulto Jovem
2.
World Neurosurg ; 135: e271-e285, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31805402

RESUMO

BACKGROUND: Cerebral edema is a major cause of morbidity in patients with severe traumatic brain injury (TBI). Intraparenchymal thermal conductivity-based probes that measure local cerebral blood flow can measure percent brain tissue water (%BTW) content, but such measures have been insufficiently characterized in patients with TBI. METHODS: We retrospectively reviewed physiologic data from patients with severe TBI treated at our institution (2014-2016) who underwent cerebral blood flow monitoring. RESULTS: Sixteen patients underwent focal %BTW measurements at a 15-minute sampling rate. %BTW measurements showed characteristic temporal profiles, with a mean time to peak of 3.7 ± 1.7 days. The mean minimum and maximum %BTWs were 71.0 ± 3.9% and 82.7 ± 7.4%, respectively (overall mean %BTW, 77.0 ± 2.9%). Intracranial pressure (ICP) values of 22 mm Hg (the current treatment threshold for patients with trauma) corresponded to 75.8 ± 5.4 %BTW. Repeated measures correlation showed that %BTW is negatively correlated with serum sodium concentration (r = -0.3; P < 0.001) and weakly positively correlated with ICP (r = 0.08; P = 0.01) and regional cerebral blood flow (r = 0.06; P < 0.001). These effects were consistent in a multivariable model including time from injury. In the best model, time was modeled as a quadratic term because the %BTW followed a parabolic trajectory. CONCLUSIONS: %BTW may be a clinically useful, real-time measurement of cerebral edema in patients with TBI. It is closely associated with the serum sodium concentration and follows a characteristic temporal course with characteristic trajectory and stability over time.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Pressão Intracraniana/fisiologia , Água , Adolescente , Adulto , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA