Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Lab Invest ; 104(3): 100329, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237740

RESUMO

Metabolic syndrome (MetS) is a worldwide challenge that is closely associated with obesity, nonalcoholic liver disease, insulin resistance, and type 2 diabetes. Boosting nicotinamide adenine dinucleotide (NAD+) presents great potential in preventing MetS. However, the function of nuclear NAD+ in the development of MetS remains poorly understood. In this study, hepatocyte-specific Nmnat1 knockout mice were used to determine a possible link between nuclear NAD+ and high-fat diet (HFD)-induced MetS. We found that Nmnat1 knockout significantly reduced hepatic nuclear NAD+ levels but did not exacerbate HFD-induced obesity and hepatic triglycerides accumulation. Interestingly, loss of Nmnat1 caused insulin resistance. Further analysis revealed that Nmnat1 deletion promoted gluconeogenesis but inhibited glycogen synthesis in the liver. Moreover, Nmnat1 deficiency induced mitochondrial dysfunction by decreasing mitochondrial DNA (mtDNA)-encoded complexes Ⅰ and Ⅳ, suppressing mtDNA replication and mtRNA transcription and reducing mtDNA copy number. In addition, Nmnat1 depletion affected the expression of hepatokines in the liver, particularly downregulating the expression of follistatin. These findings highlight the importance of nuclear NAD+ in maintaining insulin sensitivity and provide insights into the mechanisms underlying HFD-induced insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , NAD/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Camundongos Endogâmicos C57BL , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062868

RESUMO

Multiple organs and tissues coordinate to respond to dietary and environmental challenges. It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders. Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay between the cerebral and hepatic compartments. The term "liver-brain axis" vividly portrays this interaction. At the end of this review, we summarize cutting-edge technical advancements that have enabled the observation and manipulation of these signals, including genetic engineering, molecular tracing, and delivery technologies. These innovations are paving the way for a deeper understanding of the liver-brain axis and its role in metabolic homeostasis.


Assuntos
Encéfalo , Fígado , Humanos , Encéfalo/metabolismo , Fígado/metabolismo , Animais , Homeostase , Microbioma Gastrointestinal
3.
Curr Issues Mol Biol ; 45(11): 9084-9102, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998747

RESUMO

The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.

4.
Cell Mol Life Sci ; 80(1): 4, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477411

RESUMO

Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.


Assuntos
Hepatopatias , Humanos , Lipídeos
5.
Chin J Physiol ; 66(6): 401-436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149555

RESUMO

In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Medicina Tradicional Chinesa , Masculino , Feminino , Humanos , Yin-Yang , Fígado , Rim
6.
J Cell Biochem ; 123(10): 1553-1584, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818831

RESUMO

Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias Hepáticas/patologia , Cirrose Hepática/patologia , Obesidade/complicações
7.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682868

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. Organokines can produce beneficial or harmful effects in this condition. Among RA patients, organokines have been associated with increased inflammation and cartilage degradation due to augmented cytokines and metalloproteinases production, respectively. This study aimed to perform a review to investigate the role of adipokines, osteokines, myokines, and hepatokines on RA progression. PubMed, Embase, Google Scholar, and Cochrane were searched, and 18 studies were selected, comprising more than 17,000 RA patients. Changes in the pattern of organokines secretion were identified, and these could directly or indirectly contribute to aggravating RA, promoting articular alterations, and predicting the disease activity. In addition, organokines have been implicated in higher radiographic damage, immune dysregulation, and angiogenesis. These can also act as RA potent regulators of cells proliferation, differentiation, and apoptosis, controlling osteoclasts, chondrocytes, and fibroblasts as well as immune cells chemotaxis to RA sites. Although much is already known, much more is still unknown, principally about the roles of organokines in the occurrence of RA extra-articular manifestations.


Assuntos
Artrite Reumatoide , Artrite Reumatoide/metabolismo , Cartilagem/metabolismo , Condrócitos/metabolismo , Fibroblastos/metabolismo , Humanos , Articulações/metabolismo
8.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409319

RESUMO

Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Homeostase , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteômica
9.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362238

RESUMO

Sarcopenia is a disease that becomes more prevalent as the population ages, since it is directly linked to the process of senility, which courses with muscle atrophy and loss of muscle strength. Over time, sarcopenia is linked to obesity, being known as sarcopenic obesity, and leads to other metabolic changes. At the molecular level, organokines act on different tissues and can improve or harm sarcopenia. It all depends on their production process, which is associated with factors such as physical exercise, the aging process, and metabolic diseases. Because of the seriousness of these repercussions, the aim of this literature review is to conduct a review on the relationship between organokines, sarcopenia, diabetes, and other metabolic repercussions, as well the role of physical exercise. To build this review, PubMed-Medline, Embase, and COCHRANE databases were searched, and only studies written in English were included. It was observed that myokines, adipokines, hepatokines, and osteokines had direct impacts on the pathophysiology of sarcopenia and its metabolic repercussions. Therefore, knowing how organokines act is very important to know their impacts on age, disease prevention, and how they can be related to the prevention of muscle loss.


Assuntos
Sarcopenia , Humanos , Sarcopenia/metabolismo , Obesidade/metabolismo , Exercício Físico , Força Muscular , Adipocinas/metabolismo , Músculo Esquelético/metabolismo
10.
Yi Chuan ; 44(10): 853-866, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384723

RESUMO

Metabolic diseases are broadly defined as diseases caused by problems in metabolic function, including central obesity, insulin resistance, lipid glucose abnormalities, and elevated blood pressure. As an important metabolic organ, the liver plays a key role in regulating many physiological processes such as systemic glucose and lipid metabolism. Numerous studies in recent years have shown that the liver can synthesize and secrete a variety of hepatokines, including FGF21, Fetuin-A and ANGPTL8, which regulate the metabolism in an autocrine/paracrine manner. Intervention of hepatokines expression may contribute to the prevention, diagnosis and treatment of metabolic diseases. However, further studies are needed to be investigated as the mechanism of hepatokines and metabolic homeostasis is still elusive. In this review, we summarize the relationships between hepatokines and metabolic diseases in order to provide new strategies for the treatment of metabolic diseases.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Hormônios Peptídicos , Humanos , Doenças Metabólicas/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade , Glucose/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Hormônios Peptídicos/metabolismo
11.
Diabetologia ; 64(7): 1660-1673, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33796910

RESUMO

AIMS/HYPOTHESIS: The imbalance between maternal insulin resistance and a relative lack of insulin secretion underlies the pathogenesis of gestational diabetes mellitus (GDM). Alterations in T cell subtypes and increased levels of circulating proinflammatory cytokines have been proposed as potential mechanisms underlying the pathophysiology of insulin resistance in GDM. Since oestrogen modulates T cell immunity, we hypothesised that oestrogen plays a homeostatic role in visceral adipose tissue by coordinating T cell immunity through oestrogen receptor α (ERα) in T cells to prevent GDM. METHODS: Female CD4-cre ERαfl/fl (KO) mice on a C57BL/6 background with ERα ablation specifically in T cells, and ERαfl/fl (ERα-floxed [FL]) mice were fed 60 kJ% high-fat diet (HFD) for 4 weeks. Female mice mated with male BALB/c mice to achieve allogenic pregnancy and were maintained on an HFD to generate the GDM model. Mice were divided into four experimental groups: non-pregnant FL, non-pregnant KO, pregnant FL (FL-GDM) and pregnant KO (KO-GDM). GTTs and ITTs were performed on day 12.5 or 13.5 and 16.5 after breeding, respectively. On day 18.5 after breeding, mice were killed and T cell subsets in the gonadal white adipose tissue (gWAT) and spleen were analysed using flow cytometry. Histological examination was also conducted and proinflammatory gene expression in gWAT and the liver was evaluated. RESULTS: KO mice that mated with BALB/c mice showed normal fertility rates and fetal weights as compared with FL mice. Body and tissue weights were similar between FL and KO mice. When compared with FL-GDM mice, KO-GDM mice showed decreased insulin secretion (serum insulin concentration 15 min after glucose loading: 137.3 ± 18.3 pmol/l and 40.1 ± 36.5 pmol/l, respectively; p < 0.05), impaired glucose tolerance (glucose AUC in GTT: 2308.3 ± 54.0 mmol/l × min and 2620.9 ± 122.1 mmol/l × min, respectively; p < 0.05) and increased numbers of T helper (Th)17 cells in gWAT (0.4 ± 0.0% vs 0.8 ± 0.1%; p < 0.05). However, the contents of Th1 and regulatory T cells (Tregs) in gWAT remained similar between FL-GDM and KO-GDM. Glucose-stimulated insulin secretion was similar between isolated islets derived from FL and KO mice, but was reduced by IL-17A treatment. Moreover, the levels of proinflammatory gene expression, including expression of Emr1 and Tnfa in gWAT, were significantly higher in KO-GDM mice than in FL-GDM mice (5.1-fold and 2.7-fold, respectively; p < 0.01 for both). Furthermore, KO-GDM mice showed increased expression of genes encoding hepatokines, Ahsg and Fgf21 (both were 2.4-fold higher vs FL-GDM mice; p < 0.05 and p = 0.09, respectively), with no changes in inflammatory gene expression (e.g., Tnfa and Ifng) in the liver compared with FL-GDM mice. CONCLUSIONS/INTERPRETATION: Deletion of ERα in T cells caused impaired maternal adaptation of insulin secretion, changes in hepatokine profiles, and enhanced chronic inflammation in gWAT alongside an abnormal increase in Th17 cells. These results suggest that the ERα-mediated oestrogen signalling effects in T cells regulate T cell immunity and contribute to glucose homeostasis in pregnancy.


Assuntos
Diabetes Gestacional , Receptor alfa de Estrogênio/metabolismo , Glucose/metabolismo , Linfócitos T/imunologia , Animais , Diabetes Gestacional/genética , Diabetes Gestacional/imunologia , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Feminino , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Linfócitos T/metabolismo
12.
Diabetologia ; 64(7): 1461-1479, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877366

RESUMO

The global epidemic of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) and the high prevalence among individuals with type 2 diabetes has attracted the attention of clinicians specialising in liver disorders. Many drugs are in the pipeline for the treatment of NAFLD/NASH, and several glucose-lowering drugs are now being tested specifically for the treatment of liver disease. Among these are nuclear hormone receptor agonists (e.g. peroxisome proliferator-activated receptor agonists, farnesoid X receptor agonists and liver X receptor agonists), fibroblast growth factor-19 and -21, single, dual or triple incretins, sodium-glucose cotransporter inhibitors, drugs that modulate lipid or other metabolic pathways (e.g. inhibitors of fatty acid synthase, diacylglycerol acyltransferase-1, acetyl-CoA carboxylase and 11ß-hydroxysteroid dehydrogenase type-1) or drugs that target the mitochondrial pyruvate carrier. We have reviewed the metabolic effects of these drugs in relation to improvement of diabetic hyperglycaemia and fatty liver disease, as well as peripheral metabolism and insulin resistance.


Assuntos
Glicemia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Incretinas/farmacologia , Incretinas/uso terapêutico , Resistência à Insulina/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Preparações Farmacêuticas/classificação , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
J Hepatol ; 74(2): 442-457, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33161047

RESUMO

The incidence of hepatocellular carcinoma (HCC) is increasing in industrialised societies; this is likely secondary to the increasing burden of non-alcoholic fatty liver disease (NAFLD), its progressive form non-alcoholic steatohepatitis (NASH), and the metabolic syndrome. Cumulative studies suggest that NAFLD-related HCC may also develop in non-cirrhotic livers. However, prognosis and survival do not differ between NAFLD- or virus-associated HCC. Thus, research has increasingly focused on NAFLD-related risk factors to better understand the biology of hepatocarcinogenesis and to develop new diagnostic, preventive, and therapeutic strategies. One important aspect thereof is the role of hepatokines and adipokines in NAFLD/NASH-related HCC. In this review, we compile current data supporting the use of hepatokines and adipokines as potential markers of disease progression in NAFLD or as early markers of NAFLD-related HCC. While much work must be done to elucidate the mechanisms and interactions underlying alterations to hepatokines and adipokines, current data support the possible utility of these factors - in particular, angiopoietin-like proteins, fibroblast growth factors, and apelin - for detection or even as therapeutic targets in NAFLD-related HCC.


Assuntos
Carcinoma Hepatocelular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica/complicações , Comunicação Parácrina , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Descoberta de Drogas , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Fatores de Risco
14.
J Paediatr Child Health ; 57(3): 371-375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33043555

RESUMO

BACKGROUND AND AIM: Adipokines and hepatokines are proteins secreted by adipose tissue and the liver. To date, the levels of adipokines and hepatokines in cholelithiasis have only been evaluated in studies in adult patients. The purpose of our research was to assess the levels of circulating adipokines: chemerin, vaspin, progranulin, retinol-binding protein 4 (RBP-4) and hepatokine: fibroblast growth factor 21 (FGF-21) and to compare their concentrations in paediatric patients with and without cholelithiasis. METHODS: The prospective study included 54 children and adolescents diagnosed with gallstones and 26 controls. Fasting serum levels of adipokines and hepatokine were determined by enzyme-linked immunosorbent assays. RESULTS: The serum levels of chemerin, FGF-21 and RBP-4 were significantly higher in children and adolescents with gallstones compared to the control group. Elevated levels of triglycerides, RBP-4, and a homeostatic model for assessing insulin resistance (HOMA-IR) were observed in overweight or obese patients compared to patients with normal weight and cholelithiasis. Chemerin concentrations were increased in the normal-weight children and adolescents with cholelithiasis compared to the control group. Children and adolescents with gallstones and abnormal weight had significantly higher levels of chemerin, FGF-21 and RBP-4 than healthy controls. CONCLUSION: Elevated serum chemerin levels were significantly higher in non-obese patients with cholelithiasis than in non-obese controls, suggesting a potential role of chemerin in the development of cholelithiasis in children and adolescents.


Assuntos
Quimiocinas , Colelitíase , Resistência à Insulina , Adipocinas , Adolescente , Adulto , Quimiocinas/sangue , Criança , Colelitíase/etiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Estudos Prospectivos
15.
Adv Exp Med Biol ; 1270: 31-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33123991

RESUMO

Recently, it has become clearer that tumor plasticity increases the chance that cancer cells could acquire new mechanisms to escape immune surveillance, become resistant to conventional drugs, and spread to distant sites.Effectively, tumor plasticity drives adaptive response of cancer cells to hypoxia and nutrient deprivation leading to stimulation of neoangionesis or tumor escape. Therefore, tumor plasticity is believed to be a great contributor in recurrence and metastatic dissemination of cancer cells. Importantly, it could be an Achilles' heel of cancer if we could identify molecular mechanisms dictating this phenotype.The reactivation of stem-like signalling pathways is considered a great determinant of tumor plasticity; in addition, a key role has been also attributed to tumor microenvironment (TME). Indeed, it has been proved that cancer cells interact with different cells in the surrounding extracellular matrix (ECM). Interestingly, well-established communication represents a potential allied in maintenance of a plastic phenotype in cancer cells supporting tumor growth and spread. An important signalling pathway mediating cancer cell-TME crosstalk is represented by the HGF/c-Met signalling.Here, we review the role of the HGF/c-Met signalling in tumor-stroma crosstalk focusing on novel findings underlying its role in tumor plasticity, immune escape, and development of adaptive mechanisms.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Microambiente Tumoral , Humanos
16.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807959

RESUMO

Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.


Assuntos
Adipocinas/metabolismo , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Animais , Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Síndrome Metabólica/patologia , Obesidade/patologia
17.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884703

RESUMO

Sleep apnea syndrome (SAS) is a prevalent disorder characterized by recurrent apnea or hypoxia episodes leading to intermittent hypoxia (IH) and arousals during sleep. Currently, the relationship between SAS and metabolic diseases is being actively analyzed, and SAS is considered to be an independent risk factor for the development and progression of insulin resistance/type 2 diabetes (T2DM). Accumulating evidence suggests that the short cycles of decreased oxygen saturation and rapid reoxygenation, a typical feature of SAS, contribute to the development of glucose intolerance and insulin resistance. In addition to IH, several pathological conditions may also contribute to insulin resistance, including sympathetic nervous system hyperactivity, oxidative stress, vascular endothelial dysfunction, and the activation of inflammatory cytokines. However, the detailed mechanism by which IH induces insulin resistance in SAS patients has not been fully revealed. We have previously reported that IH stress may exacerbate insulin resistance/T2DM, especially in hepatocytes, adipocytes, and skeletal muscle cells, by causing abnormal cytokine expression/secretion from each cell. Adipose tissues, skeletal muscle, and the liver are the main endocrine organs producing hepatokines, adipokines, and myokines, respectively. In this review, we focus on the effect of IH on hepatokine, adipokine, and myokine expression.


Assuntos
Citocinas/biossíntese , Hipóxia/metabolismo , Resistência à Insulina , Animais , Citocinas/imunologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Hipóxia/imunologia
18.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925827

RESUMO

Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Adipocinas/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Progressão da Doença , Humanos , Fígado/metabolismo , Cirrose Hepática/fisiopatologia , Falência Hepática , Neoplasias Hepáticas/fisiopatologia , Síndrome Metabólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
19.
J Nutr ; 150(5): 1076-1085, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919514

RESUMO

BACKGROUND: Hepatokines such as fibroblast growth factor 21 (FGF21), leukocyte cell-derived chemotaxin 2 (LECT2), fetuin-A, fetuin-B, and selenoprotein P (SeP) are liver-derived proteins that are modulated by chronic energy status and metabolic disease. Emerging data from rodent and cell models indicate that hepatokines may be sensitive to acute nutritional manipulation; however, data in humans are lacking. OBJECTIVE: The aim was to investigate the influence of hyperenergetic, high-fat feeding on circulating hepatokine concentrations, including the time course of responses. METHODS: In a randomized, crossover design, 12 healthy men [mean ± SD: age, 24 ± 4 y; BMI (kg/m2), 24.1 ± 1.5] consumed a 7-d hyperenergetic, high-fat diet [HE-HFD; +50% energy, 65% total energy as fat (32% saturated, 26% monounsaturated, 8% polyunsaturated)] and control diet (36% total energy as fat), separated by 3 wk. Whole-body insulin sensitivity was assessed before and after each diet using oral-glucose-tolerance tests. Fasting plasma concentrations of FGF21 (primary outcome), LECT2, fetuin-A, fetuin-B, SeP, and related metabolites were measured after 1, 3, and 7 d of each diet. Hepatokine responses were analyzed using 2-factor repeated-measures ANOVA and subsequent pairwise comparisons. RESULTS: Compared with the control, the HE-HFD increased circulating FGF21 at 1 d (105%) and 3 d (121%; P ≤ 0.040), LECT2 at 3 d (17%) and 7 d (32%; P ≤ 0.004), and fetuin-A at 7 d (7%; P = 0.028). Plasma fetuin-B and SeP did not respond to the HE-HFD. Whole-body insulin sensitivity was reduced after the HE-HFD by 31% (P = 0.021). CONCLUSIONS: Acute high-fat overfeeding augments circulating concentrations of FGF21, LECT2, and fetuin-A in healthy men. Notably, the time course of response varies between proteins and is transient for FGF21. These findings provide further insight into the nutritional regulation of hepatokines in humans and their interaction with metabolic homeostasis. This study was registered at clinicaltrials.gov as NCT03369145.


Assuntos
Dieta Hiperlipídica , Ingestão de Energia , Fatores de Crescimento de Fibroblastos/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , alfa-2-Glicoproteína-HS/metabolismo , Adulto , Glicemia/efeitos dos fármacos , Estudos Cross-Over , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Adulto Jovem , alfa-2-Glicoproteína-HS/genética
20.
Clin Sci (Lond) ; 134(13): 1775-1799, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32677680

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.


Assuntos
Aterosclerose/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA