Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(21): e2309353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098371

RESUMO

Defect engineering is recognized as an attractive method for modulating the electronic structure and physicochemical characteristics of carbon materials. Exploiting heteroatom-doped porous carbon with copious active sites has attracted great attention for capacitive deionization (CDI). However, traditional methods often rely on the utilization of additional heteroatom sources and strong corrosive activators, suffering from low doping efficiency, insufficient doping level, and potential biotoxicity. Herein, hydrogen-bonded organic frameworks (HOFs) are employed as precursors to synthesize N, O co-doped porous carbon via a simple and green reverse defect engineering strategy, achieving controllable heavy doping of heteroatoms. The N, O co-doping triggers significant pseudocapacitive contribution and the surface pore structure supports the formation of the electric double layer. Therefore, when HOF-derived N, O co-doped carbon is used as CDI electrodes, a superior salt adsorption capacity of 32.29 ± 1.42 mg g-1 and an outstanding maximum salt adsorption rate of 10.58 ± 0.46 mg g-1 min-1 at 1.6 V in 500 mg L-1 NaCl solution are achieved, which are comparable to those of state-of-the-art carbonaceous electrodes. This work exemplifies the effectiveness of the reverse nitrogen-heavy doping strategy on improving the carbon structure, shedding light on the further development of rational designed electrode materials for CDI.

2.
Angew Chem Int Ed Engl ; 62(38): e202307083, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37489757

RESUMO

Dual-ion batteries (DIBs) is a promising technology for large-scale energy storage. However, it is still questionable how material structures affect the anion storage behavior. In this paper, we synthesis graphite with an ultra-large interlayer distance and heteroatomic doping to systematically investigate the combined effects on DIBs. The large interlayer distance of 0.51 nm provides more space for anion storage, while the doping of the heteroatoms reduces the energy barriers for anion intercalation and migration and enhances rapid ionic storage at interfaces simultaneously. Based on the synergistic effects, the DIBs composed of carbon cathode and lithium anode afford ultra-high capacity of 240 mAh g-1 at current density of 100 mA g-1 . Dual-carbon batteries (DCBs) using the graphite as both of cathode and anode steadily cycle 2400 times at current density of 1 A g-1 . Hence, this work provides a reference to the strategy of material designs of DIBs and DCBs.

3.
Small ; 17(11): e2006617, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33605080

RESUMO

A robust polyaniline-assisted strategy is developed to construct a self-supported electrode constituting a nitrogen, phosphorus, sulfur tri-doped thin graphitic carbon layer encapsulated sulfur-doped molybdenum phosphide nanosheet array (NPSCL@S-MoP NSs/CC) with accessible nanopores, desirable chemical compositions, and stable composite structure for efficient hydrogen evolution reaction (HER). The multiple electronic coupling effects of S-MoP with N, P, S tri-dopants afford effective regulation on their electrocatalytic performance by endowing abundant accessible active sites, outstanding charge-transfer property, and d-band center downshift with a thermodynamically favorable hydrogen adsorption free energy (ΔGH* ) for efficient hydrogen evolution catalysis. As a result, the NPSCL@S-MoP NSs/CC electrode exhibits overpotentials as low as 65, 114, and 49 mV at a geometric current density of 10 mA cm-2 and small Tafel slopes of 49.5, 69.3, and 53.8 mV dec-1 in 0.5 m H2 SO4 , 1.0 m PBS, and 1.0 m KOH, respectively, which could maintain 50 h of stable performance, almost outperforming all MoP-based catalysts reported so far. This study provides a valuable methodology to produce interacted multi-heteroatomic doped graphitic carbon-transition metal phosphide electrocatalysts with superior HER performance in a wide pH range.

4.
J Colloid Interface Sci ; 640: 600-609, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878077

RESUMO

Rapid preparation strategies of carbon-based materials with a high power density and energy density are crucial for the large-scale application of carbon materials in energy storage. However, achieving these goals quickly and efficiently remains challenging. Herein, the rapid redox reaction of concentrated H2SO4 and sucrose was employed as a means to destroy the perfect carbon lattice to form defects and insert large numbers of heteroatoms into the defects to rapidly form electron-ion conjugated sites of carbon materials at room temperature. Among prepared samples, CS-800-2 showed an excellent electrochemical performance (377.7 F g-1, 1 A g-1) and high energy density in 1 M H2SO4 electrolyte owing to its large specific surface area and a significant number of electron-ion conjugated sites. Additionally, CS-800-2 exhibited desirable energy storage performance in other aqueous electrolytes containing various metal ions. The theoretical calculation results revealed increased charge density near the carbon lattice defects, and the presence of heteroatoms effectively reduced the adsorption energy of carbon materials toward cations. Accordingly, the constructed "electron-ion" conjugated sites comprising defects and heteroatoms on the super-large surface of carbon-based materials accelerated the pseudo-capacitance reactions on the material surface, thereby greatly enhancing the energy density of carbon-based materials without sacrificing power density. In sum, a fresh theoretical perspective for constructing new carbon-based energy storage materials was provided, promising for future development of high-performance energy storage materials and devices.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678024

RESUMO

As a potential anode material for lithium-ion batteries (LIBs), metal tin shows a high specific capacity. However, its inherent "volume effect" may easily turn tin-based electrode materials into powder and make them fall off in the cycle process, eventually leading to the reduction of the specific capacity, rate and cycle performance of the batteries. Considering the "volume effect" of tin, this study proposes to construct a carbon coating and three-dimensional graphene network to obtain a "double confinement" of metal tin, so as to improve the cycle and rate performance of the composite. This excellent construction can stabilize the tin and prevent its agglomeration during heat treatment and its pulverization during cycling, improving the electrochemical properties of tin-based composites. When the optimized composite material of C@Sn/NSGr-7.5 was used as an anode material in LIB, it maintained a specific capacity of about 667 mAh g-1 after 150 cycles at the current density of 0.1 A g-1 and exhibited a good cycle performance. It also displayed a good rate performance with a capability of 663 mAh g-1, 516 mAh g-1, 389 mAh g-1, 290 mAh g-1, 209 mAh g-1 and 141 mAh g-1 at 0.1 A g-1, 0.2 A g-1, 0.5 A g-1, 1 A g-1, 2 A g-1 and 5 A g-1, respectively. Furthermore, it delivered certain capacitance characteristics, which could improve the specific capacity of the battery. The above results showed that this is an effective method to obtain high-performance tin-based anode materials, which is of great significance for the development of new anode materials for LIBs.

6.
ACS Appl Mater Interfaces ; 14(48): 53872-53883, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36426993

RESUMO

Cost-efficient and durable manganese-based catalysts are in great demand for the catalytic elimination of volatile organic compounds (VOCs), which are dominated not only by the nanostructures but also by the oxygen vacancies and Mn-O bond in the catalysts. Herein, a series of nanostructured Co-Fe-doped-δ-MnO2 catalysts (Co-Fe-δ-MnO2) with high dispersion were in situ fabricated by employing metal-organic-frameworks (MOFs) as reducing agents, dopants, and templates all at the same time. The as-obtained Co-Fe-δ-MnO2-20% catalyst exhibited robust durability and high catalytic activity (225 °C) for toluene combustion even in the presence of 5 vol % water vapor, which is 50 °C lower than that of pristine δ-MnO2. Various characterizations revealed that the homogeneously dispersed codoping of Co and Fe ions into δ-MnO2 promotes the generation of oxygen vacancies and weakens the strength of the Mn-O bond, thus increasing the amount of adsorbed oxygen (Oads) and improving the mobility of lattice oxygen (Olatt). Meanwhile, due to successfully inheriting the framework structures of MOFs, the obtained catalyst exhibited a high surface area and three-dimensional mesoporous structure, which contributes to diffusion and increases the number of active sites. Moreover, in situ DRIFTS results confirmed that the toluene degradation mechanism on the Co-Fe-δ-MnO2-20% follows the MVK mechanism and revealed that more Oads and high-mobility Olatt induced by this novel method contribute to accumulating and mineralizing key intermediates (benzoate) and thus promote toluene oxidation. In conclusion, this work stimulates the opportunities to develop Co-Fe-δ-MnO2 as a class of nonprecious-metal-based catalysts for controlling VOC emissions.

7.
J Colloid Interface Sci ; 618: 161-172, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338923

RESUMO

Two-dimensional (2D) transition metal carbides (MXene) have shown great advantages as electrode materials in the new generation of energy storage, especially in supercapacitors. However, the inherent low specific capacitance and restacking layers of nanosheets that occur during electrode preparation further reduce the electrochemical performance of the materials. Based on this, we design a N, S co-doping electrode with a three-dimensional (3D) structure, which not only improves the specific capacitance through fundamentally modifying the electronic structure of the electrode materials, but also effectively improves the rate performance of the electrode by preventing the restacking of 2D materials. The N, S co-doping 3D architecture Ti3C2Tx electrode (TC/NS-3D) exhibits an excellent capacitance value of 440 F g-1 at 5 mV s-1 and 64% capacitance retention rate at a high scan rate of 1000 mV s-1 in 3 mol L-1 H2SO4 electrolyte. The TC/NS-3D electrode also shows excellent capacitance retention of 97.2% after the 10,000 cycles stability test. The density functional theory (DFT) analysis reveals the enhanced performance is attributed to accelerated intermediates transport kinetics promoted by 3D structure engineering and N, S co-doping for Ti3C2Tx. This study is promising in designing heteroatomic doping 3D structure MXene-based materials for electrochemical energy storage systems.

8.
ACS Appl Mater Interfaces ; 14(26): 29867-29877, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758035

RESUMO

Graphene-based fiber-shaped supercapacitors (FSSCs) have received considerable attention as potential wearable energy storage devices owing to their simple operating mechanism, flexibility, and long-term stability. To date, energy storage capacities of supercapacitors have been significantly improved via strategies such as heteroatom doping and the incorporation of pseudocapacitive metal oxides. Herein, we develop a novel and scalable direct-hybridization method that combines heteroatom doping and metal oxide hybridization for the fabrication of high-performance FSSCs. Using porous and highly conductive nitrogen and sulfur co-doped graphene fibers (NS-GFs) as self-heating units, we successfully convert ruthenium hydroxide anchored to the surface into ruthenium oxide nanoparticles after programmed sub-second electrothermal annealing without structural damage of the fibers. The resulting fibers show an increased gravimetric capacitance of 68.88 F g-1 compared to that of the pristine NS-GF (8.32 F g-1), excellent cyclic stability maintaining 96.67% of the initial capacitance after 20 000 continuous charging/discharging cycles, and good mechanical flexibility. The findings of this work advocate a successful Joule heating strategy for preparing high-performance graphene-based metal oxide hybrid FSSCs for use in energy storage applications.

9.
ACS Appl Mater Interfaces ; 13(28): 32968-32977, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34227798

RESUMO

Li2S-based Li-S batteries are taken as promising energy storage systems due to the high theoretical specific capacity/energy density and nature of a matching Li-metal-free anode. However, the cyclic stability of the Li2S-based Li-S battery is seriously prevented by the shuttle effect of lithium polysulfides (LiPSs). Meanwhile, due to the poor electrical conductivity of Li2S, the Li-S battery displays slow reaction kinetics. In this work, we design 3D-porous carbon (PC) architecture as a host for inhabiting the LiPS shuttle based on physical capture. Furthermore, this porous carbon architecture is modified by introducing two kinds of heteroatoms (N and S) to form dual active sites (named as NSPC) for chemically binding LiPSs and accelerating their conversion. The polyvinyl pyrrolidone-coated Li2SO4·H2O is embedded in the NSPC skeleton and further forms the Li2S/NSPC cathode via a carbothermal reduction process. In consequence, the NSPC architecture possesses continuous electron/ion channels and abundant active sites, which are beneficial to the fast diffusion of Li+ and timely conversion of sulfur species. As a result, the as-prepared Li2S/NSPC cathode exhibits a high initial discharge capacity of 690 mAh g-1 at a high rate of 1C and keeps a capacity of 587 mAh g-1 after 200 cycles with a good capacity retention rate of 85% and low fading rate of 0.075% per cycle. Therefore, this work offers a brand-new platform to understand the synergistic effects of promoting reaction kinetics for Li2S-based Li-S batteries.

10.
ACS Appl Mater Interfaces ; 12(18): 20838-20848, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294380

RESUMO

Soft carbon is attracting tremendous attention as a promising anode material for potassium-ion batteries (PIBs) because of its graphitizable structure and adjustable interlayer distance. Herein, nitrogen/sulfur dual-doped porous soft carbon nanosheets (NSC) have been prepared with coal tar pitch as carbon precursors in an appropriate molten salt medium. The molten salt medium and N/S dual-doping are responsible for the formation of nanosheet-like morphology, abundant microporous channels with a high surface area of 436 m2 g-1, expanded interlamellar spacing of 0.378 nm, and enormous defect-induced active sites. These structural features are crucial for boosting potassium-ion storage performance, endowing the NSC to deliver a high potassiation storage capacity of 359 mAh g-1 at 100 mA g-1 and 115 mAh g-1 at 5.0 A g-1, and retaining 92.4% capacity retention at 1.0 A g-1 after 1000 cycles. More importantly, the pre-intercalation of K atom from the molten salts helps improve the initial Coulombic efficiency to 50%, which outperforms those of the recently reported carbon anode materials with large surface areas. The density functional theory calculations further illuminate that the N/S dual-doping can facilitate the adsorption of K-ion in carbon materials and decrease the ion diffusion energy barrier during the solid-state charge migration.

11.
Sci Total Environ ; 730: 138930, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388372

RESUMO

We reported the effective removal of chromium(VI) (Cr(VI)) from wastewater with nitrogen and sulfur codoped micro-mesoporous carbon sheets (N,S-MMCSs), which were fabricated by pyrolysis of natural biomass (luffa sponge) followed by chemical activation and hydrothermal treatment. N,S-MMCSs possessed a hierarchical micro-mesoporous sheet-like framework, large specific surface area (1525.45 m2 g-1), high pore volume (1.21 cm3 g-1), and appropriate N (1.81 wt%) and S (1.01 wt%) co-doping. Batch adsorption experiments suggested that Cr(VI) adsorption by the N,S-MMCSs increased with increase the solution acidity, adsorbent dosage, Cr(VI) concentration, temperature, and time. The Cr(VI) adsorption was mainly controlled by the chemisorptions and could be well interpreted by the Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacities of Cr(VI) were 217.39, 277.78, and 312.50 mg g-1 at 298, 308, and 318 K, respectively. The Cr(VI) adsorption procedure was spontaneous, endothermic, and randomness. The Cr(VI) adsorption mechanism followed the physical adsorption, electrostatic attraction, in situ reduction, and surface chelation. Besides, the density functional theory (DFT) calculation demonstrated that the N and S co-doping could decrease the adsorption energy and enhance the attractive interaction between N,S-MMCSs and Cr(VI) through the synergistic effect, and thus significantly improve the Cr(VI) adsorption property.


Assuntos
Biomassa , Purificação da Água , Adsorção , Carbono , Cromo , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio , Enxofre , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA