RESUMO
MOTIVATION: Understanding chemical-gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. RESULTS: We developed BioNet, a deep biological networkmodel with a graph encoder-decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.
Assuntos
Biologia Computacional , Simulação por Computador , Modelos Biológicos , Redes Neurais de ComputaçãoRESUMO
MOTIVATION: Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD: We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS: We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.
Assuntos
Reposicionamento de Medicamentos , Redes Neurais de Computação , Desenvolvimento de Medicamentos , AprendizagemRESUMO
BACKGROUND: Accurate annotation of protein function is the key to understanding life at the molecular level and has great implications for biomedicine and pharmaceuticals. The rapid developments of high-throughput technologies have generated huge amounts of protein-protein interaction (PPI) data, which prompts the emergence of computational methods to determine protein function. Plagued by errors and noises hidden in PPI data, these computational methods have undertaken to focus on the prediction of functions by integrating the topology of protein interaction networks and multi-source biological data. Despite effective improvement of these computational methods, it is still challenging to build a suitable network model for integrating multiplex biological data. RESULTS: In this paper, we constructed a heterogeneous biological network by initially integrating original protein interaction networks, protein-domain association data and protein complexes. To prove the effectiveness of the heterogeneous biological network, we applied the propagation algorithm on this network, and proposed a novel iterative model, named Propagate on Heterogeneous Biological Networks (PHN) to score and rank functions in descending order from all functional partners, Finally, we picked out top L of these predicted functions as candidates to annotate the target protein. Our comprehensive experimental results demonstrated that PHN outperformed seven other competing approaches using cross-validation. Experimental results indicated that PHN performs significantly better than competing methods and improves the Area Under the Receiver-Operating Curve (AUROC) in Biological Process (BP), Molecular Function (MF) and Cellular Components (CC) by no less than 33%, 15% and 28%, respectively. CONCLUSIONS: We demonstrated that integrating multi-source data into a heterogeneous biological network can preserve the complex relationship among multiplex biological data and improve the prediction accuracy of protein function by getting rid of the constraints of errors in PPI networks effectively. PHN, our proposed method, is effective for protein function prediction.
Assuntos
Algoritmos , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Anotação de Sequência Molecular , Mapas de Interação de Proteínas , Proteínas/metabolismoRESUMO
Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.