Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860739

RESUMO

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Assuntos
Proteínas de Transporte de Monossacarídeos/ultraestrutura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sequência de Aminoácidos , Animais , Antimaláricos , Transporte Biológico , Glucose/metabolismo , Humanos , Malária , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Parasitos , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Açúcares/metabolismo
2.
Plant Biotechnol J ; 22(6): 1566-1581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38205680

RESUMO

In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glucose , Malus , Proteínas de Plantas , Plantas Geneticamente Modificadas , Rizosfera , Malus/genética , Malus/metabolismo , Glucose/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Resistência à Seca
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33402433

RESUMO

Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a "selective starvation" strategy by inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in P. falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage P. falciparum Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.


Assuntos
Antimaláricos/química , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/ultraestrutura , Malária Falciparum/tratamento farmacológico , Proteínas de Transporte de Monossacarídeos/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sítio Alostérico , Sequência de Aminoácidos/genética , Animais , Cristalografia por Raios X , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 3/química , Malária Falciparum/genética , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Conformação Proteica/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279332

RESUMO

Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and ß-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.


Assuntos
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Arabidopsis/metabolismo , Cucumis sativus/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hexoses/metabolismo , Pólen/genética , Pólen/metabolismo , Saccharomyces cerevisiae/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas
5.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028542

RESUMO

In the fission yeast, Schizosaccharomyces pombe, the high-affinity hexose transporter, Ght5, must be transcriptionally upregulated and localized to the cell surface for cell division under limited glucose. Although cell-surface localization of Ght5 depends on Target of rapamycin complex 2 (TORC2), the molecular mechanisms by which TORC2 ensures proper localization of Ght5 remain unknown. We performed genetic screening for gene mutations that restore Ght5 localization on the cell surface in TORC2-deficient mutant cells, and identified a gene encoding an uncharacterized α-arrestin-like protein, Aly3/SPCC584.15c. α-arrestins are thought to recruit a ubiquitin ligase to membrane-associated proteins. Consistently, Ght5 is ubiquitylated in TORC2-deficient cells, and this ubiquitylation is dependent on Aly3. TORC2 supposedly enables cell-surface localization of Ght5 by preventing Aly3-dependent ubiquitylation and subsequent ubiquitylation-dependent translocation of Ght5 to vacuoles. Surprisingly, nitrogen starvation, but not glucose depletion, triggers Aly3-dependent transport of Ght5 to vacuoles in S. pombe, unlike budding yeast hexose transporters, vacuolar transport of which is initiated upon changes in hexose concentration. This study provides new insights into the molecular mechanisms controlling the subcellular localization of hexose transporters in response to extracellular stimuli.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Arrestina , Glucose , Proteínas Facilitadoras de Transporte de Glucose , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas de Transporte de Monossacarídeos/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Proteins ; 90(10): 1766-1778, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35445447

RESUMO

Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.


Assuntos
Antimaláricos , Malária Falciparum , Trifosfato de Adenosina , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Metabolismo dos Carboidratos , Glucose/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Proteínas de Transporte de Monossacarídeos/genética , Plasmodium falciparum/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409244

RESUMO

Sugars, which are critical osmotic compounds and signalling molecules in plants, and Sugars Will Eventually be Exported Transporters (SWEETs), which constitute a novel family of sugar transporters, play central roles in plant responses to multiple abiotic stresses. In the present study, a member of the SWEET gene family from cucumber (Cucumis sativus L.), CsSWEET2, was identified and characterized. Histochemical analysis of ß-glucuronidase expression in transgenic Arabidopsis plants showed that CsSWEET2 is highly expressed in the leaves; subcellular localization indicated that CsSWEET2 proteins are localized in the plasma membrane and endoplasmic reticulum. Heterologous expression assays in yeast demonstrated that CsSWEET2 encodes an energy-independent hexose/H+ uniporter that can complement both glucose and fructose transport deficiencies. Compared with wild-type Arabidopsis plants, transgenic Arabidopsis plants overexpressing CsSWEET2 had much lower relative electrolyte leakage levels and were much more resistant to cold stress. Sugar content analysis showed that glucose and fructose levels in the transgenic Arabidopsis plants were significantly higher than those in the wild-type plants. Taken together, our results suggest that, by mediating sugar metabolism and compartmentation, CsSWEET2 plays a vital role in improving plant cold tolerance.


Assuntos
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Arabidopsis/metabolismo , Resposta ao Choque Frio , Cucumis sativus/metabolismo , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
8.
Curr Genet ; 67(1): 107-114, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33136227

RESUMO

Yeast and cancer cells are metabolically similar as they use fermentation of glucose as a primary means of generating energy. Reliance on glucose fermentation makes both of these cell types highly sensitive to the toxic glucose analog, 2-deoxyglucose. Here we review the cellular and metabolic pathways that play a role in 2-deoxyglucose sensitivity and discuss how the modifications to these pathways result in acquisition of 2-deoxyglucose resistance. Insights gained from genetic and proteomic studies in yeast provide new ideas for the design of combinatorial therapies for cancer treatment.


Assuntos
Dano ao DNA/genética , Desoxiglucose/genética , Endocitose/genética , Proteômica , Glucose/genética , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética
9.
J Appl Microbiol ; 131(4): 1787-1799, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33694233

RESUMO

AIMS: In this study, we attempted to increase the productivity of Candida glycerinogenes yeast for ethanol production from non-detoxified sugarcane bagasse hydrolysates (NDSBH) by identifying the hexose transporter in this yeast that makes a high contribution to glucose consumption, and by adding additional copies of this transporter and enhancing its membrane localisation stability (MLS). METHODS AND RESULTS: Based on the knockout and overexpression of key hexose transporter genes and the characterisation of their promoter properties, we found that Cghxt4 and Cghxt6 play major roles in the early and late stages of fermentation, respectively, with Cghxt4 contributing most to glucose consumption. Next, subcellular localisation analysis revealed that a common mutation of two ubiquitination sites (K9 and K538) in Cghxt4 improved its MLS. Finally, we overexpressed this Cghxt4 mutant (Cghxt4.2A) using a strong promoter, PCgGAP , which resulted in a significant increase in the ethanol productivity of C. glycerinogenes in the NDSBH medium. Specifically, the recombinant strain showed 18 and 25% higher ethanol productivity than the control in two kinds of YP-NDSBH medium (YP-NDSBH1G160 and YP-NDSBH2G160 ), respectively. CONCLUSIONS: The hexose transporter mutant Cghxt4.2A (Cghxt4K9A,K538A ) with multiple copies and high MLS was able to significantly increase the ethanol productivity of C. glycerinogenes in NDSBH. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results provide a promising strategy for constructing efficient strains for ethanol production.


Assuntos
Saccharum , Candida/genética , Celulose , Etanol , Fermentação , Hidrólise , Proteínas de Transporte de Monossacarídeos , Pichia
10.
Appl Microbiol Biotechnol ; 105(19): 7295-7307, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34515842

RESUMO

Efficient hexose transporters are essential for the development of industrial yeast strains with high fermentation performance. We previously identified a hexose transporter, CgHxt4, with excellent sugar uptake performance at ultra-high glucose concentrations (200 g/L) in the high sugar fermenting yeast C. glycerinogenes. To understand the working mechanism of this transporter, we constructed 87 mutants and examined their glucose uptake performance. The results revealed that five residues (N321, N322, F325, G426, and P427) are essential for the efficient glucose transport of CgHxt4. Subsequently, we focused our analysis on the roles of N321 and P427. Specifically, N321 and P427 are likely to play a role in glucose coordination and conformational flexibility, respectively. Our results help to expand the application potential of this transporter and provide insights into the working mechanism of yeast hexose transporter. KEY POINTS: • Five residues, transmembrane segments 7 and 10, were found to be essential for CgHxt4. • N321 and P427 are likely to play a role in glucose coordination and conformational flexibility, respectively. • Chimeric CgHxt5.4TM7 significantly enhanced the performance of CgHxt5.


Assuntos
Proteínas de Transporte de Monossacarídeos , Saccharomyces cerevisiae , Candida/genética , Fermentação , Glucose , Proteínas de Transporte de Monossacarídeos/genética , Pichia , Saccharomyces cerevisiae/genética , Açúcares
11.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073109

RESUMO

Colletotrichum higginsianum is an important hemibiotrophic plant pathogen that causes crucifer anthracnose worldwide. To date, some hexose transporters have been identified in fungi. However, the functions of hexose transporters in virulence are not clear in hemibiotrophic phytopathogens. In this study, we identified and characterized a new hexose transporter gene named ChHxt6 from a T-DNA insertion pathogenicity-deficient mutant G256 in C. higginsianum. Expression profiling analysis revealed that six ChHxt genes, ChHxt1 to ChHxt6, exhibited specific expression patterns in different infection phases of C. higginsianum. The ChHxt1 to ChHxt6 were separately deleted using the principle of homologous recombination. ChHxt1 to ChHxt6 deletion mutants grew normally on PDA plates, but only the virulence of ChHxt4 and ChHxt6 deletion mutants was reduced. ChHxt4 was required for fungal infection in both biotrophic and necrotrophic stages, while ChHxt6 was important for formation of necrotrophic hyphae during infection. In addition, ChHxts were functional in uptake of different hexoses, but only ChHxt6-expressing cells could grow on all five hexoses, indicating that the ChHxt6 was a central hexose transporter and crucial for hexose uptake. Site-directed mutation of T169S and P221L positions revealed that these two positions were necessary for hexose transport, whereas only the mutation Thr169 caused reduced virulence and defect in formation of necrotrophic hyphae. Taken together, ChHxt6 might regulate fungal virulence by modulating the utilization of hexose.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Doenças das Plantas/microbiologia , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Brassica/microbiologia , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Hexoses/metabolismo , Virulência
12.
Plant Biotechnol J ; 18(2): 540-552, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31350935

RESUMO

Sugar transporters are necessary to transfer hexose from cell wall spaces into parenchyma cells to boost hexose accumulation to high concentrations in fruit. Here, we have identified an apple hexose transporter (HTs), MdHT2.2, located in the plasma membrane, which is highly expressed in mature fruit. In a yeast system, the MdHT2.2 protein exhibited high 14 C-fructose and 14 C-glucose transport activity. In transgenic tomato heterologously expressing MdHT2.2, the levels of both fructose and glucose increased significantly in mature fruit, with sugar being unloaded via the apoplastic pathway, but the level of sucrose decreased significantly. Analysis of enzyme activity and the expression of genes related to sugar metabolism and transport revealed greatly up-regulated expression of SlLIN5, a key gene encoding cell wall invertase (CWINV), as well as increased CWINV activity in tomatoes transformed with MdHT2.2. Moreover, the levels of fructose, glucose and sucrose recovered nearly to those of the wild type in the sllin5-edited mutant of the MdHT2.2-expressing lines. However, the overexpression of MdHT2.2 decreased hexose levels and increased sucrose levels in mature leaves and young fruit, suggesting that the response pathway for the apoplastic hexose signal differs among tomato tissues. The present study identifies a new HTs in apple that is able to take up fructose and glucose into cells and confirms that the apoplastic hexose levels regulated by HT controls CWINV activity to alter carbohydrate partitioning and sugar content.


Assuntos
Frutas , Malus , Proteínas de Plantas , Solanum lycopersicum , Parede Celular/enzimologia , Frutas/química , Frutas/genética , Solanum lycopersicum/química , Solanum lycopersicum/genética , Malus/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Açúcares/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
13.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981362

RESUMO

Torulaspora delbrueckii is a yeast species receiving increasing attention from the biotechnology industry, with particular relevance in the wine, beer and baking sectors. However, little is known about its sugar transporters and sugar transport capacity, frequently a rate-limiting step of sugar metabolism and efficient fermentation. Actually, only one glucose transporter, Lgt1, has been characterized so far. Here we report the identification and characterization of a second glucose transporter gene, IGT1, located in a cluster, upstream of LGT1 and downstream of two other putative hexose transporters. Functional characterization of IGT1 in a Saccharomyces cerevisiae hxt-null strain revealed that it encodes a transporter able to mediate uptake of glucose, fructose and mannose and established that its affinity, as measured by Km, could be modulated by glucose concentration in the medium. In fact, IGT1-transformed S. cerevisiae hxt-null cells, grown in 0.1% glucose displayed biphasic glucose uptake kinetics with an intermediate- (Km = 6.5 ± 2.0 mM) and a high-affinity (Km = 0.10 ± 0.01 mM) component, whereas cells grown in 2% glucose displayed monophasic kinetics with an intermediate-affinity (Km of 11.5 ± 1.5 mM). This work contributes to a better characterization of glucose transport in T. delbrueckii, with relevant implications for its exploitation in the food industry.


Assuntos
Metabolismo dos Carboidratos , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Torulaspora/genética , Torulaspora/metabolismo , Fermentação , Frutose/metabolismo , Cinética , Manose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Appl Microbiol Biotechnol ; 102(13): 5557-5567, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29705955

RESUMO

During high gravity fermentation, a set of hexose transporters in yeasts plays an important role in efficient sugar transport. However, hexose transporters have been studied mainly in the Saccharomyces cerevisiae model and at low or moderate sugar concentrations. The hexose transporters are still poorly understood in the industrial glycerol producer Candida glycerinogenes, which assimilates sugar efficiently at high glucose concentration. To explore these hexose transporters, 14 candidates were identified using a hidden Markov model and characterized. Five of these functioned as hexose transporters when expressed in S. cerevisiae. In particular, CgHxt4 showed the highest efficiency of glucose transport at elevated glucose concentration among a group of transporters including Hxt1 and Hxt7 from S. cerevisiae. qRT-PCR in C. glycerinogenes revealed that transcription of CgHXT4 was induced by high glucose concentrations while fluorescence localization analysis indicated that CgHxt4 remained relatively stable on the membrane under these conditions. In addition, site-directed mutagenesis revealed that the asparagine 329 from CgHxt4, located in the YYX(T/P) conserved motif of hexose transporters, promoted an increased glucose transport. Overexpressing CgHXT4 in S. cerevisiae enhanced glucose consumption and ethanol production more effectively at high glucose concentrations than ScHXT1, the most significant native transporter from S. cerevisiae. These results indicate that CgHxt4 plays an important role in the fermentation process as a hexose transporter with strong transport activity and efficient expression regulation at high glucose concentrations.


Assuntos
Candida/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Candida/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/genética
15.
Zhongguo Zhong Yao Za Zhi ; 43(6): 1124-1130, 2018 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29676118

RESUMO

In this study, RACE technology was employed to isolate the full length cDNA of DoHT1 in Dendrobium officinale, followed by bioinformatics analysis of the sequence characteristics. And the expression pattern of the gene was also analyzed by quantitative PCR. The full length cDNA of DoHT1 was 1 586 bp in length, containing a 1 536 bp ORF, which encoded a 511-aa protein with molecular weight of 56.18 kD and isoelectric point of 9.08. The deduced DoHT1 protein had the major facilitator superfamily conserved domain (22-483), SUGAR₋TRANSPORT₋1 (139-164), and SUGAR₋TRANSPORT₋2 (338-355), typical for sugar transporter; DoHT1, without a single peptide had 11 transmembrane regions, and was predicted to locate in the plasma membrane; DoHT1 had high identities (54.7%-80.7%) with HTs proteins from various plants. DoHT1 belonged to the MST (monosaccharide transporter) group of the evolutionary tree, and was closely related to the Phalaenopsis equestris. DoHT1 was differentially expressed in the three included organs. The transcripts were significantly the most abundant in the leaves with 19.36 fold than roots, then 1.82 fold in the stems than the roots. The identification and molecular characterization of the full length DoHT1 will be essential for further function study of the gene during the regulation of sugar metabolism of D. officinale.


Assuntos
Dendrobium/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Regulação da Expressão Gênica de Plantas , Filogenia
17.
Fungal Genet Biol ; 61: 23-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24076076

RESUMO

Miltefosine (MI) has in vitro fungicidal activity against pathogenic fungi. However, mechanisms of resistance to MI have not been studied. By screening a genomic library of the model yeast, Saccharomyces cerevisiae, we identified HXT13 as a candidate genetic determinant of MI resistance. HXT13 belongs to the yeast hexose transporter family, which mediates hexose sugar uptake and is included in the major facilitator superfamily (MFS). We now report that overexpression of HXT13, but not of the closely-related genes, HXT15 and HXT17, and the more distantly related HXT14, resulted in a stable MI-resistant phenotype in S. cerevisiae. Resistance of the HXT13 overexpressing strain to MI correlated with higher cell viability following MI exposure as assessed by SYTOX® green staining compared with the control and overexpressing HXT14 strains. The mechanism of resistance in the HXT13 overexpressing strain was due to increased ATP-independent MI efflux. However, resistance to MI of the HXT13-overexpressing strain did not extend to other drugs including the echinocandins, amphotericin B, azoles, cycloheximide and sulfometuron methyl, ruling out the involvement of HXT13 in multidrug resistance. In summary, we have identified a new function of the hexose sugar transporter gene HXT13 when overexpressed in S. cerevisiae, namely, in efflux of MI and in mediating MI resistance.


Assuntos
Antifúngicos/metabolismo , Farmacorresistência Fúngica , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforilcolina/análogos & derivados , Saccharomyces cerevisiae/enzimologia , Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/genética , Fosforilcolina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
18.
J Gen Appl Microbiol ; 68(6): 270-277, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35781263

RESUMO

Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Proteínas de Transporte de Monossacarídeos/genética , Longevidade , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Glucose
19.
Front Cell Infect Microbiol ; 13: 1321240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282613

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite. The eradication of vivax malaria remains challenging due to transmission of drug-resistant parasite and dormant liver form. Consequently, anti-malarial drugs with novel mechanisms of action are urgently demanded. Glucose uptake blocking strategy is suggested as a novel mode of action that leads to selective starvation in various species of malaria parasites. The role of hexose transporter 1 in Plasmodium species is glucose uptake, and its blocking strategies proved to successfully induce selective starvation. However, there is limited information on the glucose uptake properties via P. vivax hexose transporter 1 (PvHT1). Thus, we focused on the PvHT1 to precisely identify its properties of glucose uptake. The PvHT1 North Korean strain (PvHT1NK) expressed Xenopus laevis oocytes mediating the transport of [3H] deoxy-D-glucose (ddGlu) in an expression and incubation time-dependent manner without sodium dependency. Moreover, the PvHT1NK showed no exchange mode of glucose in efflux experiments and concentration-dependent results showed saturable kinetics following the Michaelis-Menten equation. Non-linear regression analysis revealed a Km value of 294.1 µM and a Vmax value of 1,060 pmol/oocyte/hr, and inhibition experiments showed a strong inhibitory effect by glucose, mannose, and ddGlu. Additionally, weak inhibition was observed with fructose and galactose. Comparison of amino acid sequence and tertiary structure between P. falciparum and P. vivax HT1 revealed a completely conserved residue in glucose binding pocket. This result supported that the glucose uptake properties are similar to P. falciparum, and PfHT1 inhibitor (compound 3361) works in P. vivax. These findings provide properties of glucose uptake via PvHT1NK for carbohydrate metabolism and support the approaches to vivax malaria drug development strategy targeting the PvHT1 for starving of the parasite.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodium vivax , Plasmodium falciparum , Glucose/metabolismo , Malária Falciparum/parasitologia
20.
J Biomol Struct Dyn ; 41(23): 14450-14459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812293

RESUMO

The emergence of artemisinin resistance by malaria parasites is a major challenge in the fight against malaria, thus posing serious threat to the public health across the world. To tackle this, antimalarial drugs with unconventional mechanisms are therefore urgently needed. It has been reported that selective starvation of Plasmodium falciparum by blocking the function of hexose transporter 1 (PfHT1) protein, the only known transporter for glucose uptake in P. falciparum, could provide an alternative approach to fight the drug resistant malaria parasites. In this study, three high affinity molecules (BBB_25784317, BBB_26580136 and BBB_26580144) that have shown the best docked conformation and least binding energy with PfHT1 were shortlisted. The docking energy of BBB_25784317, BBB_26580136 and BBB_26580144 with PfHT1 were -12.5, -12.1 and -12.0 kcal/mol, respectively. In the follow up simulation studies, the protein 3D structure maintains considerable stability in the presence of the compounds. It was also observed that the compounds produced a number of hydrophilic and hydrophobic interactions with the protein allosteric site residues. This demonstrates strong intermolecular interaction guided by close distance hydrogen bonds of compounds with Ser45, Asn48, Thr49, Asn52, Ser317, Asn318, Ile330 and Ser334. Revalidation of compounds binding affinity was conducted by more appropriate simulation based binding free energy techniques (MM-GB/PBSA and WaterSwap). Additionally, entropy assay was performed that further strengthen the predictions. In silico pharmacokinetics confirmed that the compounds would be suitable candidates for oral delivery due to their high gastrointestinal absorption and less toxic reaction. Overall, the predicted compounds are promising and could be further sought as antimalarial leads and subjected to thorough experimental investigations.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/uso terapêutico , Proteínas de Protozoários/química , Hexoses , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária/parasitologia , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA