Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cereb Cortex ; 33(5): 2215-2228, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35695785

RESUMO

The envelope is essential for speech perception. Recent studies have shown that cortical activity can track the acoustic envelope. However, whether the tracking strength reflects the extent of speech intelligibility processing remains controversial. Here, using stereo-electroencephalogram technology, we directly recorded the activity in human auditory cortex while subjects listened to either natural or noise-vocoded speech. These 2 stimuli have approximately identical envelopes, but the noise-vocoded speech does not have speech intelligibility. According to the tracking lags, we revealed 2 stages of envelope tracking: an early high-γ (60-140 Hz) power stage that preferred the noise-vocoded speech and a late θ (4-8 Hz) phase stage that preferred the natural speech. Furthermore, the decoding performance of high-γ power was better in primary auditory cortex than in nonprimary auditory cortex, consistent with its short tracking delay, while θ phase showed better decoding performance in right auditory cortex. In addition, high-γ responses with sustained temporal profiles in nonprimary auditory cortex were dominant in both envelope tracking and decoding. In sum, we suggested a functional dissociation between high-γ power and θ phase: the former reflects fast and automatic processing of brief acoustic features, while the latter correlates to slow build-up processing facilitated by speech intelligibility.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Córtex Auditivo/fisiologia , Inteligibilidade da Fala , Estimulação Acústica , Eletroencefalografia , Percepção da Fala/fisiologia
2.
Proc Natl Acad Sci U S A ; 113(24): 6755-60, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247381

RESUMO

Predictive coding theories posit that neural networks learn statistical regularities in the environment for comparison with actual outcomes, signaling a prediction error (PE) when sensory deviation occurs. PE studies in audition have capitalized on low-frequency event-related potentials (LF-ERPs), such as the mismatch negativity. However, local cortical activity is well-indexed by higher-frequency bands [high-γ band (Hγ): 80-150 Hz]. We compared patterns of human Hγ and LF-ERPs in deviance detection using electrocorticographic recordings from subdural electrodes over frontal and temporal cortices. Patients listened to trains of task-irrelevant tones in two conditions differing in the predictability of a deviation from repetitive background stimuli (fully predictable vs. unpredictable deviants). We found deviance-related responses in both frequency bands over lateral temporal and inferior frontal cortex, with an earlier latency for Hγ than for LF-ERPs. Critically, frontal Hγ activity but not LF-ERPs discriminated between fully predictable and unpredictable changes, with frontal cortex sensitive to unpredictable events. The results highlight the role of frontal cortex and Hγ activity in deviance detection and PE generation.


Assuntos
Percepção Auditiva , Eletrocardiografia , Lobo Frontal/fisiopatologia , Convulsões/fisiopatologia , Lobo Temporal/fisiopatologia , Adulto , Feminino , Humanos , Masculino
3.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34732536

RESUMO

Studies in animals have demonstrated a strong relationship between cortical and hippocampal activity, and autonomic tone. However, the extent, distribution, and nature of this relationship have not been investigated with intracranial recordings in humans during sleep. Cortical and hippocampal population neuronal firing was estimated from high γ band activity (HG) from 70 to 110 Hz in local field potentials (LFPs) recorded from 15 subjects (nine females) during nonrapid eye movement (NREM) sleep. Autonomic tone was estimated from heart rate variability (HRV). HG and HRV were significantly correlated in the hippocampus and multiple cortical sites in NREM stages N1-N3. The average correlation between HG and HRV could be positive or negative across patients given anatomic location and sleep stage and was most profound in lateral temporal lobe in N3, suggestive of greater cortical activity associated with sympathetic tone. Patient-wide correlation was related to δ band activity (1-4 Hz), which is known to be correlated with high γ activity during sleep. The percentage of statistically correlated channels was weaker in N1 and N2 as compared with N3, and was strongest in regions that have previously been associated with autonomic processes, such as anterior hippocampus and insula. The anatomic distribution of HRV-HG correlations during sleep did not reproduce those usually observed with positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) during waking. This study aims to characterize the relationship between autonomic tone and neuronal firing rate during sleep and further studies are needed to investigate finer temporal resolutions, denser coverages, and different frequency bands in both waking and sleep.


Assuntos
Sistema Nervoso Autônomo , Sono , Eletroencefalografia , Feminino , Frequência Cardíaca , Hipocampo/diagnóstico por imagem , Humanos , Fases do Sono
4.
Front Neurosci ; 14: 599010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328870

RESUMO

Recent studies have shown the ability to record high-γ signals (80-160 Hz) in electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have had hemicraniectomies. However, extraction of the movement-related high-γ remains challenging due to a confounding bandwidth overlap with surface electromyogram (EMG) artifacts related to facial and head movements. In our previous work, we described an augmented independent component analysis (ICA) approach for removal of EMG artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG (ERASE). Here, we tested this algorithm on EEG recorded from six TBI patients with hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean of 52 ± 12% (mean ± S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional ICA removed a mean of 27 ± 19% (mean ± S.E.M) of EMG artifacts from EEG. In particular, high-γ synchronization was significantly improved in the contralateral hand motor cortex area within the hemicraniectomy site after ERASE was applied. A more sophisticated measure of high-γ complexity is the fractal dimension (FD). Here, we computed the FD of EEG high-γ on each channel. Relative FD of high-γ was defined as that the FD in move state was subtracted by FD in idle state. We found relative FD of high-γ over hemicraniectomy after applying ERASE were strongly correlated to the amplitude of finger flexion force. Results showed that significant correlation coefficients across the electrodes related to thumb flexion averaged ~0.76, while the coefficients across the homologous electrodes in non-hemicraniectomy areas were nearly 0. After conventional ICA, a correlation between relative FD of high-γ and force remained high in both hemicraniectomy areas (up to 0.86) and non-hemicraniectomy areas (up to 0.81). Across all subjects, an average of 83% of electrodes significantly correlated with force was located in the hemicraniectomy areas after applying ERASE. After conventional ICA, only 19% of electrodes with significant correlations were located in the hemicraniectomy. These results indicated that the new approach isolated electrophysiological features during finger motor activation while selectively removing confounding EMG artifacts. This approach removed EMG artifacts that can contaminate high-gamma activity recorded over the hemicraniectomy.

5.
Epilepsy Res ; 110: 78-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25616459

RESUMO

INTRODUCTION: This study describes development of a novel language mapping approach using high-γ modulation in electrocorticograph (ECoG) during spontaneous conversation, and its comparison with electrical cortical stimulation (ECS) in childhood-onset drug-resistant epilepsy. METHODS: Patients undergoing invasive pre-surgical monitoring and able to converse with the investigator were eligible. ECoG signals and synchronized audio were acquired during quiet baseline and during natural conversation between investigator and the patient. Using Signal Modeling for Real-time Identification and Event Detection (SIGFRIED) procedure, a statistical model for baseline high-γ (70-116 Hz) power, and a single score for each channel representing the probability that the power features in the experimental signal window belonged to the baseline model, were calculated. Electrodes with significant high-γ responses (HGS) were plotted on the 3D cortical model. Sensitivity, specificity, positive and negative predictive values (PPV, NPV), and classification accuracy were calculated compared to ECS. RESULTS: Seven patients were included (4 males, mean age 10.28 ± 4.07 years). Significant high-γ responses were observed in classic language areas in the left hemisphere plus in some homologous right hemispheric areas. Compared with clinical standard ECS mapping, the sensitivity and specificity of HGS mapping was 88.89% and 63.64%, respectively, and PPV and NPV were 35.29% and 96.25%, with an overall accuracy of 68.24%. HGS mapping was able to correctly determine all ECS+ sites in 6 of 7 patients and all false-sites (ECS+, HGS- for visual naming, n = 3) were attributable to only 1 patient. CONCLUSIONS: This study supports the feasibility of language mapping with ECoG HGS during spontaneous conversation, and its accuracy compared to traditional ECS. Given long-standing concerns about ecological validity of ECS mapping of cued language tasks, and difficulties encountered with its use in children, ECoG mapping of spontaneous language may provide a valid alternative for clinical use.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Estimulação Elétrica/métodos , Eletroencefalografia/métodos , Idioma , Fala/fisiologia , Adolescente , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Estudos de Viabilidade , Feminino , Ritmo Gama , Humanos , Relações Interpessoais , Masculino , Modelos Neurológicos , Cuidados Pré-Operatórios , Sensibilidade e Especificidade , Percepção da Fala/fisiologia
6.
J Nutr Sci ; 3: e43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26101612

RESUMO

Arachidonic acid (ARA) is essential in felines because conversion of dietary linoleic acid (LA) to ARA is rate-limited by low Δ6-desaturase. Dietary γ-linolenic acid (GLA) may serve as an ARA precursor by-passing this initial rate-limiting step. This possibility was investigated using twenty-six adult female domestic shorthair cats divided into three groups and fed on complete and balanced diets containing high GLA (GL), high LA (HL) or low LA (LL, control) diets, for 300 d prior to ovariohysterectomy. Plasma was obtained 1-2 d before surgery and uterine, ovarian and associated adipose tissues were reserved for lipid analysis. Fatty acid profiles of the plasma phospholipid (PL) fractions and adipose lipids were performed. In the GL group, plasma and uterine tissue PL were significantly enriched in GLA, di-homo GLA (DGLA) and ARA compared with control. However, ovarian and adipose tissue PL were only enriched in DGLA. Enrichment of uterine tissues with DGLA and ARA probably supplies the essential eicosanoid precursors for reproduction when GLA is fed consistently with an active Δ5-desaturase in uterus. By contrast, this enzyme appears less active in ovary because ARA was not higher compared with control. Earlier reports concluded that ARA was not necessary for fertilisation (an ovarian function), but required for successful pregnancy and reproduction (a uterine function). Adipose tissue DGLA may be a reservoir for ARA synthesis by other tissues upon mobilisation. Dietary GLA may meet feline ARA requirements in the absence of an animal-based preformed source of ARA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA