Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7732-7740, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869233

RESUMO

Rechargeable lithium-ion batteries are integral to contemporary energy storage, yet current anode material systems struggle to meet the increasing demand for extended range capabilities. This work introduces a novel composite anode material composed of one-dimensional 2H-phase tin disulfide (SnS2) nanoribbons enclosed within cavities of single-walled carbon nanotubes (SnS2@SWCNTs), achieved through precise atomic engineering. Employing aberration-corrected transmission electron microscopy, we precisely elucidated the crystal structure of SnS2 within the confines of the SWCNTs. This deliberate design effectively addresses the inherent limitations of SnS2 as a lithium-ion anode material, including its low electrical conductivity, considerable volume expansion effects, and unstable solid electrolyte interface membrane. Testing confirmed that SnS2 transforms into the Li5Sn2 alloy phase after full lithiation and back to SnS2 after delithiation, showing excellent reversibility. The composite also benefits from edge effects, improving lithium storage through stronger binding and lower migration barriers, which were supported by calculations. This pioneering work advances high-performance anode materials for applications.

2.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985806

RESUMO

Plastic electrodes are desirable for the rapid development of flexible organic electronics. In this article, a plastic electrode has been prepared by employing traditional conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and plastic substrate polyethersulfone (PES). The completed electrode (Denote as HC-PEDOT:PSS) treated by 80% concentrated sulfuric acid (H2SO4) possesses a high electrical conductivity of over 2673 S/cm and a high transmittance of over 90% at 550 nm. The high conductivity is attributed to the regular arrangement of PEDOT molecules, which has been proved by the X-ray diffraction characterization. Temperature-dependent conductivity measurement reveals that the HC-PEDOT:PSS possesses both semiconducting and metallic properties. The binding force and effects between the PEDOT and PEI are investigated in detail. All plastic solar cells with a classical device structure of PES/HC-PEDOT:PSS/PEI/P3HT:ICBA/EG-PEDOT:PSS show a PCE of 4.05%. The ITO-free device with a structure of Glass/HC-PEDOT:PSS/Al4083/PM6:Y6/PDINO/Ag delivers an open-circuit voltage (VOC) of 0.81 V, short-circuit current (JSC ) of 23.5 mA/cm2, fill factor (FF) of 0.67 and a moderate power conversion efficiency (PCE) of 12.8%. The above results demonstrate the HC-PEDOT:PSS electrode is a promising candidate for all-plastic solar cells and ITO-free organic solar cells.

3.
Angew Chem Int Ed Engl ; 62(4): e202216838, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36440880

RESUMO

The synthesis of crystalline polymer with a well-defined orientated state and a two-dimensional crystalline size beyond a micrometer will be essential to achieve the highest physical feature of polymer material but remain challenging. Herein, we show the synthesis of the crystalline unipolymer monolayer with an unusual ultrahigh modulus that is higher than the ITO substrate and high conductance by simultaneous electrosynthesis and manipulation. We find that the polymer monolayer has fully extended in the vertical and unidirectional orientation, which is proposed to approach their theoretically highest density, modulus, and conductivity among all aggregation formations of the current polymer. The modulus and current density can reach 40 and 1000 times higher than their amorphous counterpart. It is also found that these monolayers exhibit the bias- and length-dependent multiple charge states and asymmetrically negative differential resistance (NDR) effect, indicating that this unique molecular tailoring and ordering design is promising for multilevel resistive memory devices. Our work demonstrates the creation of a crystalline polymer monolayer for approaching the physical limit of polymer electronic materials and also provides an opportunity to challenge the synthetically iterative limit of an isolated ultra-long polymer.

4.
Small ; 18(32): e2203307, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843875

RESUMO

Metal-organic frameworks (MOFs), known as porous coordination polymers, have attracted intense interest as electrode materials for supercapacitors (SCs) owing to their advantageous features including high surface area, tunable porous structure, structural diversity, etc. However, the insulating nature of most MOFs has impeded their further electrochemical applications. A common solution for this issue is to transform pristine MOFs into more stable and conductive metal compounds/porous carbon materials through pyrolysis, which however losses the inherent merits of MOFs. To find a consummate solution, recently a surge of research devoted to improving the electrical conductivity of pristine MOFs for SCs has been carried out. In this review, the most related research work on pristine MOF-based materials is reviewed and three effective strategies (chemical structure design of conductive MOFs (c-MOFs), composite design, and binder-free structure design) which can significantly increase their conductivity and consequently the electrochemical performance in SCs are proposed. The conductivity enhancement mechanism in each approach is well analyzed. The representative research works on using pristine MOFs for SCs are also critically discussed. It is hoped that the new insights can provide guidance for developing high-performance electrode materials based on pristine MOFs with high conductivity for SCs in the future.

5.
Proc Natl Acad Sci U S A ; 116(38): 18815-18821, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31467166

RESUMO

Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 composite electrolyte with a Li-ion conductivity of 5.4 × 10-5 and 3.5 × 10-4 S cm-1 at 25 and 45 °C, respectively; the strong interaction between the F- of TFSI- (bis-trifluoromethanesulfonimide) and the surface Ta5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm-2 A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO4 and high-voltage Li|LiNi0.8Mn0.1Co0.1O2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.

6.
Small ; 17(40): e2008200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496143

RESUMO

The combination of good stability, biocompatibility, and high mechanical strength is attractive for bio-related material applications, but it remains challenging to simultaneously achieve these properties in a single, ionically conductive material. Here a "wood" ionic cable, made of aligned wood nanofibrils, demonstrating a combination of biocompatibility, high mechanical strength, high ionic conductivity, and excellent stability is reported. The wood ionic cable possesses excellent flexibility and exhibits high tensile strength up to 260 MPa (in the dry state) and ≈80 MPa (in the wet state). The nanochannels within the highly aligned cellulose nanofibrils and the presence of negative charges on the surfaces of these nanochannels, originating from the cellulose hydroxyl groups, provide new opportunities for ion regulation at low salt concentrations. Ion regulation in turn enables the wood ionic cable to have unique nanofluidic ionic behaviors. The Na+ ion conductivity of the wood ionic cable can reach up to ≈1.5 × 10-4 S cm-1 at low Na+ ion concentration (1.0 × 10-5 mol L-1 ), which is an order of magnitude higher than that of bulk NaCl solution at the same concentration. The scalable, biocompatible wood ionic cable enables novel ionic device designs for potential ion-regulation applications.


Assuntos
Celulose , Madeira , Hidrogéis , Íons , Resistência à Tração
7.
Small ; 17(38): e2102149, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423524

RESUMO

Design of high-performance all-inorganic halide perovskites, especially lead-free perovskites, is key to the broadening of its application prospects. Herein, the authors report the synthesis of ligand-free cesium platinum (IV) bromide nanocrystals (Cs2 PtBr6 NCs), a new kind of vacancy-ordered lead-free perovskite nanomaterial, by a facile one-pot method. The Cs2 PtBr6 NCs exhibits a narrow band gap of 1.32 eV covering the entire visible range, which is supported by density functional theory calculations. Together with their high conductivity, matching energy levels with the work function of carbon electrodes, and excellent environmental stability, this NC displays a cathodic photocurrent density as high as 335 µA cm-2 , two orders of magnitude higher than other perovskites in aqueous solutions without the need of other electron acceptors. These combined properties suggest that the Cs2 PtBr6 NCs have great potentials in a wide range of photoelectronic and photoelectrochemical sensing applications.


Assuntos
Compostos de Cálcio , Nanopartículas , Óxidos , Titânio
8.
Small ; 17(43): e2101576, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34155817

RESUMO

Potassium-ion batteries (PIBs) are recognized as promising alternatives for lithium-ion batteries as the next-generation energy storage systems. However, the larger radius of K+ hinders the K+ insertion into the conventional carbon electrode and results in sluggish potassiation kinetics and poor cycling stability. Here, nitrogen and fluorine dual doping of soft carbon nanotubes (NFSC) anode are synthesized in one pot, achieving extraordinary electrochemical performance for PIBs. It is demonstrated that NFSC with a doping dose of 5.6 at% nitrogen and 1.3 at% fluorine together exhibits the highest reversible capacity of 238 mAh g-1 at 0.2 A g-1 and cycling stability of 186 mAh g-1 after 1000 cycles at 1 A g-1 . The extraordinary electrochemical performance can be attributed to the hollow structure, expanded interlayer distance, nitrogen and fluorine dual doping, and the binding ability of abundant defect sites. Moreover, density functional theory shows that the extra fluorine modification can dramatically enhance the conventional nitrogen doping effect and reduces the formation energy which makes a great contribution to the improvement of electrical conduction and K-ions insert. This work may promote the development of low-cost and sustainable carbon-based materials for PIBs and other advanced energy storage devices.

9.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671608

RESUMO

We propose a flexible anti-metal radio frequency identification (RFID) tag antenna based on a high-conductivity graphene assembly film (HCGAF). The HCGAF has a conductivity of 1.82 × 106 S m-1, a sheet resistance of 25 mΩ and a thickness of 22 µm. The HCGAF is endowed with high conductivity comparable to metal materials and superb flexibility, which is suitable for making antennas for microwave frequencies. Through proper structural design, parameter optimization, semiautomatic manufacturing and experimental measurements, an HCGAF antenna could realize a realized gain of -7.3 dBi and a radiation efficiency of 80%, and the tag could achieve a 6.4 m read range at 915 MHz on a 20 × 20 cm2 flat copper plate. In the meantime, by utilizing flexible polyethylene (PE) foam, good conformality was obtained. The read ranges of the tags attached to curved copper plates with different bending radii were measured, as well as those of those attached to several daily objects. All the results demonstrate the excellent performance of the design, which is highly favorable for practical RFID anti-metal applications.

10.
Small ; 15(8): e1804732, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30653274

RESUMO

Fiber-shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one-step wet-spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3 C2 Tx MXene nanosheets and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm-1 , which is about five times higher than other reported Ti3 C2 Tx MXene-based fibers (up to ≈290 S cm-1 ). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm-3 at 5 mV s-1 ) and an excellent rate performance (≈375.2 F cm-3 at 1000 mV s-1 ). When assembled into a free-standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm-3 and ≈8249 mW cm-3 , respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene-based fiber electrodes and their scalable production for fiber-based energy storage applications.

11.
Angew Chem Int Ed Engl ; 57(46): 15028-15033, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199139

RESUMO

Li metal is considered to be an ultimate anode for metal batteries owing to its extremely high theoretical capacity and lowest potential. However, numerous issues such as short lifespan and infinite volume expansion caused by the dendrite growth during Li plating/stripping hinder its practical usage. These challenges become more grievous under high current densities. Herein, 3D porous MXene aerogels are proposed as scaffolds for high-rate Li metal anodes using Ti3 C2 as an example. With high metallic electron conductivity, fast Li ion transport capability, and abundant Li nucleation sites, such scaffolds could deliver high cycling stability and low overpotential at current density up to 10 mA cm-2 . High rate performance is also demonstrated in full cells with LiFePO4 as cathodes. This work provides a new type of scaffolds for Li metal anodes and paves the way for the application of non-graphene 2D materials toward high energy density Li metal batteries.

12.
Nano Lett ; 16(6): 3616-23, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27148884

RESUMO

Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 µm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

13.
Small ; 10(7): 1421-9, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24323826

RESUMO

A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film-forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles.

14.
Polymers (Basel) ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932081

RESUMO

Silver-based metal-organic decomposition inks composed of silver salts, complexing agents and volatile solvents are now the subject of much research due to the simplicity and variability of their preparation, their high stability and their relatively low sintering temperature. The use of this type of ink in inkjet printing allows for improved cost-effective and environmentally friendly technology for the production of electrical devices, including flexible electronics. An approach to producing a silver salt-based reactive ink for jet printing has been developed. The test images were printed with an inkjet printer onto polyimide substrates, and two-stage thermal sintering was carried out at temperatures of 60 °C and 100-180 °C. The structure and electrical properties of the obtained conductive lines were investigated. As a result, under optimal conditions an electrically conductive film with low surface resistance of approximately 3 Ω/square can be formed.

15.
Carbohydr Polym ; 326: 121654, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142084

RESUMO

Although flexible double layer capacitors based on hydrogels overcome the drawbacks of commercial double layer capacitors such as low safety and non-deformability, it is still considered as attractive challenges to achieve high conductivity for hydrogel electrolytes as well as high operating voltages for hydrogel flexible supercapacitors. In this paper, ion migration channels were engineered by immobilizing positive and negative charges on polymer skeleton and dispersing cellulose nanofibers in the polymerized polyelectrolyte network, providing ultra-high ionic conductivity (103 mS cm-1). In addition, K3[Fe(CN)6] was introduced through a soaking method, leading to redox reactions on the surface of carbon electrode during charging and discharging, supporting a relatively wide voltage window (1.8 V). Moreover, the specific capacitance at high current remained 55 % of the specific capacitance at low current, indicating excellent rate performance. In addition, the device displayed high cycling stability (80.05 % after 10,000 cycles). Notably, we successfully light up the red LED with only one device. Accordingly, this work provides a feasible design concept for the development of cellulose nanofibers (CNF) hydrogel-based solid-state electrolyte with high conductivity for flexible supercapacitors with wide potential window and high energy density.

16.
J Colloid Interface Sci ; 665: 133-143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520930

RESUMO

Anion exchange membranes (AEMs) are the heart of alkaline fuel cells and water electrolysis, and have made a great progress in recent years. However, AEMs are still unable to satisfy the needs of high conductivity and stability, hindering their widespread commercialization. Side chain regulations have been widely used to prepare highly conductive and durable AEMs. Here, we construct a series of polyaromatic AEMs grafted with fluorinated cation side chains and cation-free alkyl chains with different end groups to explore the polar discrimination of side chains on membrane performance. This work demonstrates that AEMs grafting the cation side chains with superhydrophobic fluorine pendent and alkyl side chains with hydrophilic pendent enhance water content and ion conductivity. This is due to the strong immiscibility between the hydrophilic and hydrophobic head groups which promotes the establishments of microphase separation and ion highways. Specifically, poly(binaphthyl-co-terphenyl piperidinium) containing fluorinated piperidinium side chains and alkyl chains with methoxy pendent (QBNTP-QFM) possesses a satisficed OH- conductivity (170.6 mS cm-1 at 80 °C) and can tolerate 5 M hot NaOH for 2100 h with only 3.4 % conductivity loss. Expectedly, the single cell with QBNTP-QFM yields a prominent maximum power density of 1.62 W cm-2 and the water electrolysis cell with QBNTP-QFM achieves a pronounced current density of 3.0 A cm-2 at 1.8 V, both cells also display a prominent durability for 120 h operation. The results prove that this side chain optimization can improve ion conductivity and is a promising method for AEM development.

17.
ACS Appl Mater Interfaces ; 16(6): 7200-7210, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315968

RESUMO

Thermal batteries are solid-state, thermally activated batteries with long storage times and high reliability. FeS2 is used as a cathode material commonly, but the high internal resistance and low voltage platform limit the improvement of battery performance. Herein, the 1T-phase vanadium disulfide (VS2) is prepared via the scalable hydrothermal method and applied to thermal battery cathode materials for the first time. 1T-VS2 lamellar flower clusters have high electronic conductivity (1.583 S cm-1) at room temperature, which is 75 times higher than FeS2 (0.021 S cm-1). Mechanism analysis shows that 1T-VS2@V2O3 can be formed based on the part of 1T-VS2 being oxidized to V2O3 at the discharge temperature. Benefiting from the synergistic effect of vanadium sulfide and vanadium oxide as a cathode for thermal batteries enhanced specific capacity (292.4 mA h g-1) and mass energy density (572.5 W h kg-1) when cutoff voltage is 1 V. Additionally, the discharge results indicate that the cells utilizing 1T-VS2 cathodes provided a higher voltage platform of 2.11 V than 1.84 V for FeS2. This impressive work can offer a good strategy for boosting cathode materials for a high-performance thermal battery.

18.
J Colloid Interface Sci ; 664: 469-477, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484515

RESUMO

Transition metal oxides have been acknowledged for their exceptional water splitting capabilities in alkaline electrolytes, however, their catalytic activity is limited by low conductivity. The introduction of sulfur (S) into nickel molybdate (NiMoO4) at room temperature leads to the formation of sulfur-doped NiMoO4 (S-NiMoO4), thereby significantly enhancing the conductivity and facilitating electron transfer in NiMoO4. Furthermore, the introduction of S effectively modulates the electron density state of NiMoO4 and facilitates the formation of highly active catalytic sites characterized by a significantly reduced hydrogen absorption Gibbs free energy (ΔGH*) value of -0.09 eV. The electrocatalyst S-NiMoO4 exhibits remarkable catalytic performance in promoting the hydrogen evolution reaction (HER), displaying a significantly reduced overpotential of 84 mV at a current density of 10 mA cm-2 and maintaining excellent durability at 68 mA cm-2 for 10 h (h). Furthermore, by utilizing the anodic sulfide oxidation reaction (SOR) instead of the sluggish oxygen evolution reaction (OER), the assembled electrolyzer employing S-NiMoO4 as both the cathode and anode need merely 0.8 V to achieve 105 mA cm-2, while simultaneously producing hydrogen gas (H2) and S monomer. This work paves the way for improving electron transfer and activating active sites of metal oxides, thereby enhancing their HER activity.

19.
ACS Appl Mater Interfaces ; 16(8): 11076-11083, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38377586

RESUMO

All-solid-state lithium-sulfur batteries (ASSLSBs) have advantageous features, such as high energy, low costs, enhanced safety, and no polysulfide dissolution. However, the use of sulfur as an active material in all-solid-state batteries is difficult because of its ionic and electrical insulating properties. Herein, we introduce a flower-shaped composite material consisting of MoS2 nanoparticles and sulfur, designed to establish interconnected ionic and electrical conduction pathways at the cathode. As a host material, MoS2 nanoparticles with a large specific surface area can coconduct Li ions and electrons, possessing the potential for effectively utilizing sulfur. However, MoS2 nanoparticles are prone to physical-electrochemical isolation by being surrounded by sulfur due to their crumpling property in the process of mixing and impregnation with sulfur. This problem is addressed by mildly milling the MoS2 nanoparticles and sulfur, after which melt diffusion is applied to generate uniform MoS2/sulfur composite materials to establish an interconnected conducting pathway within the composite. A sulfide solid electrolyte (Li6PS5Cl)-based ASSLSB incorporating the proposed MoS2/sulfur composite demonstrates a stable operation over 1000 cycles with a Coulombic efficiency of nearly 100%. This study emphasizes the significance of the structural design of the sulfur composite material on top of the intrinsic properties of the material for high-performance ASSLSBs.

20.
Adv Sci (Weinh) ; 10(27): e2302932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37455678

RESUMO

This present study illustrates the synthesis and preparation of polyoxanorbornene-based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring-opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li-ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10-4 S cm-1 at room temperature and excellent electrochemical performance, including high-rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4 cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium-metal batteries (LMB).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA