Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2115217119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235449

RESUMO

The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.


Assuntos
Citoplasma/metabolismo , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Biopolímeros/metabolismo , Células Cultivadas , Tomografia com Microscopia Eletrônica/métodos , Filamentos Intermediários/química , Camundongos , Vimentina/química
2.
J Synchrotron Radiat ; 31(Pt 4): 923-935, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861370

RESUMO

X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.

3.
Neuroradiology ; 66(9): 1481-1493, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995394

RESUMO

BACKGROUND: Visualizing (micro)vascular structures remains challenging for researchers and clinicians due to limitations in traditional radiological imaging methods. Exploring the role of vascular development in craniofacial malformations in experimental settings can enhance understanding of these processes, with the effectiveness of high-resolution imaging techniques being crucial for successful research in this field. Micro-CT imaging offers 3D microstructural insights, but requires contrast-enhancing staining agents (CESAs) for visualizing (micro)-vascular tissues, known as contrast-enhanced micro-CT (CECT). As effective contrast agents are crucial for optimal visualization, this review focuses on comparative studies investigating such agents for micro-vascular tissue imaging using micro-CT. Furthermore, we demonstrate the utilization of B-Lugol solution as a promising contrast agent for acquiring high-quality micro-CT images of (micro)vascular structures in human embryonic samples. METHOD: This scoping review followed Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols. PubMed database provided relevant articles, screened initially by title and abstract. Inclusion and exclusion criteria defined outcomes of interest. RESULTS: From an initial search, 273 records were identified, narrowed down to 9 articles after applying our criteria. Additionally, two articles were added through citation searching. This, a total of 11 articles were incorporated in this study. CONCLUSION: This micro-CT contrast agent review underscores the need for tailored choices based on research goals. Both Barium sulfate and Iodine-based agents showing excellent results, providing high resolution (micro) vascular content, especially in ex-vivo specimens. However, careful consideration of protocols and tissue characteristics remains imperative for optimizing the effectiveness of micro-CT imaging for the study of cranio-facial vascular development.


Assuntos
Meios de Contraste , Microtomografia por Raio-X , Humanos , Microtomografia por Raio-X/métodos , Imageamento Tridimensional/métodos
4.
Skeletal Radiol ; 53(9): 1889-1902, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38441616

RESUMO

In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.


Assuntos
Doenças Musculoesqueléticas , Fótons , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Doenças Musculoesqueléticas/diagnóstico por imagem , Sistema Musculoesquelético/diagnóstico por imagem
5.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066086

RESUMO

Single-pixel imaging (SPI) is an alternative method for obtaining images using a single photodetector, which has numerous advantages over the traditional matrix-based approach. However, most experimental SPI realizations provide relatively low resolution compared to matrix-based imaging systems. Here, we show a simple yet effective experimental method to scale up the resolution of SPI. Our imaging system utilizes patterns based on Hadamard matrices, which, when reshaped to a variable aspect ratio, allow us to improve resolution along one of the axes, while sweeping of patterns improves resolution along the second axis. This work paves the way towards novel imaging systems that retain the advantages of SPI and obtain resolution comparable to matrix-based systems.

6.
Neuroimage ; 274: 120121, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080347

RESUMO

Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.


Assuntos
Odorantes , Bulbo Olfatório , Ratos , Camundongos , Animais , Bulbo Olfatório/fisiologia , Imageamento por Ressonância Magnética/métodos , Vigília/fisiologia , Olfato/fisiologia , Roedores
7.
J Mol Recognit ; 36(9): e3047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474122

RESUMO

Cry11Aa and Cyt1Aa are two pesticidal toxins produced by Bacillus thuringiensis subsp. israelensis. To improve our understanding of the nature of their oligomers in the toxic actions and synergistic effects, we performed the atomic force microscopy to probe the surfaces of their natively grown crystals, and used the L-weight filter to enhance the structural features. By L-weight filtering, molecular sizes of the Cry11Aa and Cyt1Aa monomers obtained are in excellent agreement with the three-dimensional structures determined by x-ray crystallography. Moreover, our results show that the layered feature of a structural element distinguishes the topographic characteristics of Cry11Aa and Cyt1Aa crystals, suggesting that the Cry11Aa toxin has a better chance than Cyt1Aa for multimerization and therefore cooperativeness of the toxic actions.


Assuntos
Bacillus thuringiensis , Endotoxinas , Endotoxinas/química , Endotoxinas/toxicidade , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Proteínas de Bactérias/química , Bacillus thuringiensis/química
8.
Mol Syst Biol ; 18(9): e11186, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36164978

RESUMO

Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


Assuntos
Peroxissomos , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Acta Haematol ; 146(5): 419-423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37339614

RESUMO

Photon counting detector (PCD) computed tomography (CT) is a paradigm-shifting innovation in CT imaging which was recently granted approval for clinical use by the US Food and Drug Administration. PCD-CT allows the generation of multi-energy images with increased contrast and scanning speed or ultra-high spatial resolution (UHR) images with lower radiation doses, compared to the currently used energy integrating detector (EID) CT. Since the recognition of bone disease related to multiple myeloma is important for the diagnosis and management of patients, the advent of PCD-CT heralds a new era in superior diagnostic evaluation of myeloma bone disease. In a first-in-human pilot study, patients with multiple myeloma were imaged with UHR-PCD-CT to validate and establish the utility of this technology in routine imaging and clinical care. We describe 2 cases from that cohort to highlight the superior imaging performance and diagnostic potential of PCD-CT for multiple myeloma compared to clinical standard EID-CT. We also discuss how the advanced imaging capabilities from PCD-CT enhances clinical diagnostics to improve care and overall outcomes for patients.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Projetos Piloto , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X/métodos
10.
BMC Ophthalmol ; 23(1): 318, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452284

RESUMO

PURPOSE: To describe imaging characteristics of severe macular complications occurring in glaucoma and discuss available treatments. METHODS: Retrospective case series of glaucomatous patients with macular retinoschisis (MR) and/or serous retinal detachment (SRD). Patients underwent a complete ophthalmological examination and multimodal imaging including retinography, SD-OCT, fluorescein and indocyanine green angiography (FA & ICGA) and adaptive optics (AO). RESULTS: Ten eyes (8 patients) were included. Initial BCVA was 1.04 ± 1.12 logMAR and IOP was 24.0 ± 9.3mmHg. All eyes presented with MR while SRD was present in 5 eyes (5 patients), with a central macular thickness of 573 ± 152 µm. FA and ICGA allowed to exclude leakage in all cases. A focal lamina cribrosa defect (LCD) was found in four eyes (4 patients) using OCT, with AO providing en-face visualization of the defect in one eye. Outer retinal hole was present in 3 eyes (3 patients). No visual improvement or resolution of the macular retinoschisis was observed in eyes with medical or surgical IOP control (N = 9). Vitrectomy with internal membrane limiting peeling and gas tamponade was performed in one eye with good visual results. CONCLUSIONS: Multimodal high-resolution imaging is essential to diagnose severe macular complications associated with advanced glaucoma.


Assuntos
Glaucoma , Descolamento Retiniano , Perfurações Retinianas , Retinosquise , Humanos , Retinosquise/diagnóstico , Estudos Retrospectivos , Descolamento Retiniano/cirurgia , Glaucoma/cirurgia , Perfurações Retinianas/cirurgia , Tomografia de Coerência Óptica , Vitrectomia/métodos , Imagem Multimodal
11.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177526

RESUMO

Since infrared reflectography was first applied in the 1960s to visualize the underdrawings of ancient paintings, several devices and scanning techniques were successfully proposed both as prototypes and commercial instruments. In fact, because of the sensors' small dimension, typically ranging from 0.1 to 0.3 megapixels, scanning is always required. Point, line, and image scanners are all viable options to obtain an infrared image of the painting with adequate spatial resolution. This paper presents a newly developed, tailormade scanning system based on an InGaAs camera equipped with a catadioptric long-focus lens in a fixed position, enabling all movements to occur by means of a rotating mirror and precision step motors. Given the specific design of this system, as the mirror rotates, refocus of the lens is necessary and it is made possible by an autofocus system involving a laser distance meter and a motorized lens. The system proved to be lightweight, low cost, easily portable, and suitable for the examination of large-scale painting surfaces by providing high-resolution reflectograms. Furthermore, high-resolution images at different wavelengths can be obtained using band-pass filters. The in-situ analysis of a 16th-century panel painting is also discussed as a representative case study to demonstrate the effectiveness and reliability of the system described herein.

12.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958958

RESUMO

Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.


Assuntos
Cromatina , Nucleossomos , Microscopia , Genoma , Núcleo Celular
13.
J Struct Biol ; 214(4): 107912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283630

RESUMO

The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Tomografia por Raios X , DNA , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética
14.
J Anat ; 241(2): 358-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510779

RESUMO

In early limb embryogenesis, synovial joints acquire specific shapes which determine joint motion and function. The process by which the opposing cartilaginous joint surfaces are moulded into reciprocal and interlocking shapes, called joint morphogenesis, is one of the least understood aspects of joint formation and the cell-level dynamics underlying it are yet to be unravelled. In this research, we quantified key cellular dynamics involved in growth and morphogenesis of the zebrafish jaw joint and synthesised them in a predictive computational simulation of joint development. Cells in larval zebrafish jaw joints labelled with cartilage markers were tracked over a 48-h time window using confocal imaging. Changes in distance and angle between adjacent cell centroids resulting from cell rearrangement, volume expansion and extracellular matrix (ECM) deposition were measured and used to calculate the rate and direction of local tissue deformations. We observed spatially and temporally heterogeneous growth patterns with marked anisotropy over the developmental period assessed. There was notably elevated growth at the level of the retroarticular process of the Meckel's cartilage, a feature known to undergo pronounced shape changes during zebrafish development. Analysis of cell dynamics indicated a dominant role for cell volume expansion in growth, with minor influences from ECM volume increases and cell intercalation. Cell proliferation in the joint was minimal over the timeframe of interest. Synthesising the dynamic cell data into a finite element model of jaw joint development resulted in accurate shape predictions. Our biofidelic computational simulation demonstrated that zebrafish jaw joint growth can be reasonably approximated based on cell positional information over time, where cell positional information derives mainly from cell orientation and cell volume expansion. By modifying the input parameters of the simulation, we were able to assess the relative contributions of heterogeneous growth rates and of growth orientation. The use of uniform rather than heterogeneous growth rates only minorly impacted the shape predictions, whereas isotropic growth fields resulted in altered shape predictions. The simulation results suggest that growth anisotropy is the dominant influence on joint growth and morphogenesis. This study addresses the gap of the cellular processes underlying joint morphogenesis, with implications for understanding the aetiology of developmental joint disorders such as developmental dysplasia of the hip and arthrogryposis.


Assuntos
Cartilagem , Peixe-Zebra , Animais , Arcada Osseodentária , Larva , Morfogênese , Articulação Temporomandibular
15.
Sensors (Basel) ; 22(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957449

RESUMO

In this work, we investigate the potential of employing a direct conversion integration mode X-ray detector with micron-scale pixels in two different X-ray phase-contrast imaging (XPCi) configurations, propagation-based (PB) and edge illumination (EI). Both PB-XPCi and EI-XPCi implementations are evaluated through a wave optics model-numerically simulated in MATLAB-and are compared based on their contrast, edge-enhancement, visibility, and dose efficiency characteristics. The EI-XPCi configuration, in general, demonstrates higher performance compared to PB-XPCi, considering a setup with the same X-ray source and detector. However, absorption masks quality (thickness of X-ray absorption material) and environmental vibration effect are two potential challenges for EI-XPCi employing a detector with micron-scale pixels. Simulation results confirm that the behavior of an EI-XPCi system employing a high-resolution detector is susceptible to its absorption masks thickness and misalignment. This work demonstrates the potential and feasibility of employing a high-resolution direct conversion detector for phase-contrast imaging applications where higher dose efficiency, higher contrast images, and a more compact imaging system are of interest.


Assuntos
Iluminação , Simulação por Computador , Radiografia , Raios X
16.
Neuroimage ; 226: 117520, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137474

RESUMO

In the primate visual system, form (shape, location) and color information are processed in separate but interacting pathways. Recent access to high-resolution neuroimaging has facilitated the exploration of the structure of these pathways at the mesoscopic level in the human visual cortex. We used 7T fMRI to observe selective activation of the primary visual cortex to chromatic versus achromatic stimuli in five participants across two scanning sessions. Achromatic checkerboards with low spatial frequency and high temporal frequency targeted the color-insensitive magnocellular pathway. Chromatic checkerboards with higher spatial frequency and low temporal frequency targeted the color-selective parvocellular pathway. This work resulted in three main findings. First, responses driven by chromatic stimuli had a laminar profile biased towards superficial layers of V1, as compared to responses driven by achromatic stimuli. Second, we found stronger preference for chromatic stimuli in parafoveal V1 compared with peripheral V1. Finally, we found alternating, stimulus-selective bands stemming from the V1 border into V2 and V3. Similar alternating patterns have been previously found in both NHP and human extrastriate cortex. Together, our findings confirm the utility of fMRI for revealing details of mesoscopic neural architecture in human cortex.


Assuntos
Percepção de Cores/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
17.
Rep Prog Phys ; 84(10)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34404033

RESUMO

This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.


Assuntos
Hélio , Espectrometria de Massa de Íon Secundário , Testes Diagnósticos de Rotina , Microscopia Eletrônica
18.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190571, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33222638

RESUMO

The initial conditions for the density perturbations in the early Universe, which dictate the large-scale structure and distribution of galaxies we see today, are set during inflation. Measurements of primordial non-Gaussianity are crucial for distinguishing between different inflationary models. Current measurements of the matter power spectrum from the cosmic microwave background only constrain this on scales up to k ∼ 0.1 Mpc-1. Reaching smaller angular scales (higher values of k) can provide new constraints on non-Gaussianity. A powerful way to do this is by measuring the HI matter power spectrum at [Formula: see text]. In this paper, we investigate what values of k can be reached for the Low-Frequency Array (LOFAR), which can achieve [Formula: see text]1″ resolution at approximately 50 MHz. Combining this with a technique to isolate the spectrally smooth foregrounds to a wedge in [Formula: see text]-k⊥ space, we demonstrate what values of k we can feasibly reach within observational constraints. We find that LOFAR is approximately five orders of magnitude away from the desired sensitivity, for 10 years of integration time. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

19.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668260

RESUMO

We present a back-to-back (BTB) structured, dual-mode ultrasonic device that incorporates a single-element 5.3 MHz transducer for high-intensity focused ultrasound (HIFU) treatment and a single-element 20.0 MHz transducer for high-resolution ultrasound imaging. Ultrasound image-guided surgical systems have been developed for lesion monitoring to ensure that ultrasonic treatment is correctly administered at the right locations. In this study, we developed a dual-element transducer composed of two elements that share the same housing but work independently with a BTB structure, enabling a mode change between therapy and imaging via 180-degree mechanical rotation. The optic fibers were embedded in the HIFU focal region of ex vivo chicken breasts and the temperature change was measured. Images were obtained in vivo mice before and after treatment and compared to identify the treated region. We successfully acquired B-mode and C-scan images that display the hyperechoic region indicating coagulation necrosis in the HIFU-treated volume up to a depth of 10 mm. The compact BTB dual-mode ultrasonic transducer may be used for subcutaneous thermal ablation and monitoring, minimally invasive surgery, and other clinical applications, all with ultrasound only.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Ultrassom , Animais , Camundongos , Transdutores , Ultrassonografia
20.
Traffic ; 19(8): 639-649, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29673018

RESUMO

Immunogold labeling of permeabilized whole-mount cells or thin-sectioned material is widely used for the subcellular localization of biomolecules at the high spatial resolution of electron microscopy (EM). Those approaches are well compatible with either 3-dimensional (3D) reconstruction of organelle morphology and antigen distribution or with rapid cryofixation-but not easily with both at once. We describe here a specimen preparation and labeling protocol for animal cell cultures, which represents a novel blend of specifically adapted versions of established techniques. It combines the virtues of reliably preserved organelle ultrastructure, as trapped by rapid freezing within milliseconds followed by freeze-substitution and specimen rehydration, with the advantages of robust labeling of intracellular constituents in 3D through means of pre-embedding NANOGOLD-silver immunocytochemistry. So obtained thin and semi-thick epoxy resin sections are suitable for transmission EM imaging, as well as tomographic reconstruction and modeling of labeling patterns in the 3D cellular context.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Imunoeletrônica/métodos , Tomografia/métodos , Animais , Antígenos/química , Células CACO-2 , Criopreservação/métodos , Compostos de Epóxi/química , Congelamento , Ouro/química , Células HeLa , Humanos , Imuno-Histoquímica , Nanopartículas/química , Pressão , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA