Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37566089

RESUMO

Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.

2.
Am J Transl Res ; 9(4): 1943-1955, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469799

RESUMO

The aim of this study is to determine the roles of global histone acetylation (Ac)/methylation (me), their modifying enzymes, and gene-specific histone enrichment in active pulmonary tuberculosis (TB) disease. Global histone H3K27me3, H3K27me2, H3K9me3, H3K9Ac, and H3K14Ac expressions, and their modifying enzyme expressions, including KDM1A, KDM6B, EZH2, HDAC1, and HDAC2, were assessed in blood leukocytes from 81 patients with active pulmonary TB disease and 44 matched healthy subjects (HS). TLR2, TNF-α, IFN-γ, and IL12B-specific histone enrichment of peripheral blood mononuclear cells was measured by chromatin immunoprecipitation method. We found that Global H3K14Ac was decreased and H3K27me2 was increased in TB patients as compared with that in HS. TB patients with low H3K14Ac had lower one-year survival. Global H3K27me3 was increased in TB patients with high bacterial burden, or systemic symptoms as compared with that in those without the attribute or HS. HDAC1 gene/protein expressions were increased in TB patients as compared with that in HS, whereas KDM6B gene/protein expressions were decreased. Global H3K27me2, HDAC1 and KDM6B protein expressions were all reversed to normal after 6-month anti-TB treatment. TNF-α/IL12B promoter-specific H3K14Ac and TNF-α/IL12B/IFN-γ promoter-specific H3K27me2 enrichment were all decreased in 10 TB patients as compared with that in 10 HS. Among them, IL12B-specific H3K27me2 enrichment was reversed to normal after treatment, while the other 4 remained depressed. In conclusions, H3K14 hypoacetylation and H3K27 hypermethylation play a role in the development of active pulmonary TB disease or its clinical phenotypes, probably through up-regulation of HDAC1 and down-regulation of KDM6B, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA