Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Ecol ; 33(5): e16990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37208829

RESUMO

Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human-mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human-mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human-mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human-mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.


Assuntos
Colinus , Hibridização Genética , Animais , Humanos , Ecossistema , Evolução Biológica , Cuba
2.
Mol Phylogenet Evol ; 198: 108135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925425

RESUMO

Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.


Assuntos
Genoma Mitocondrial , Passeriformes , Filogenia , Animais , Passeriformes/genética , Passeriformes/classificação , Polimorfismo de Nucleotídeo Único , DNA Mitocondrial/genética , Análise de Sequência de DNA , Museus
3.
Cell Mol Life Sci ; 80(10): 287, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689602

RESUMO

Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.


Assuntos
Conotoxinas , Caramujo Conus , Toxinas Biológicas , Humanos , Animais , Conotoxinas/farmacologia , Proteínas de Membrana , Canais de Sódio/genética
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33827928

RESUMO

The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.


Assuntos
Biomassa , Gadus morhua/genética , Instabilidade Genômica , Polimorfismo Genético , Animais , Oceano Atlântico , Evolução Molecular , Gadus morhua/fisiologia
5.
Mol Ecol ; 32(20): 5514-5527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37702122

RESUMO

During the last century, the critically endangered cotton-top tamarin (Saguinus oedipus) has been threatened by multiple anthropogenic factors that drastically affected their habitat and population size. As the genetic impact of these pressures is largely unknown, this study aimed to establish a genetic baseline with the use of temporal sampling to determine the genetic makeup before detrimental anthropogenic impact. Genomes were resequenced from a combination of historical museum samples and modern wild samples at low-medium coverage, to unravel how the cotton-top tamarin population structure and genomic diversity may have changed during this period. Our data suggest two populations can be differentiated, probably separated historically by the mountain ranges of the Paramillo Massif in Colombia. Although this population structure persists in the current populations, modern samples exhibit genomic signals consistent with recent inbreeding, such as long runs of homozygosity and a reduction in genome-wide heterozygosity especially in the greater northeast population. This loss is likely the consequence of the population reduction following the mass exportation of cotton-top tamarins for biomedical research in the 1960s, coupled with the habitat loss this species continues to experience. However, current populations have not experienced an increase in genetic load. We propose that the historical genetic baseline established in this study can be used to provide insight into alteration in the modern population influenced by a drastic reduction in population size as well as providing background information to be used for future conservation decision-making for the species.

6.
Mol Ecol ; 32(24): 6729-6742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873879

RESUMO

Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.


Assuntos
DNA , Museus , DNA/genética , Biologia
7.
Mol Ecol ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715549

RESUMO

Translocation programmes are increasingly being informed by genetic data to monitor and enhance conservation outcomes for both natural and established populations. These data provide a window into contemporary patterns of genetic diversity, structure and relatedness that can guide managers in how to best source animals for their translocation programmes. The inclusion of historical samples, where possible, strengthens monitoring by allowing assessment of changes in genetic diversity over time and by providing a benchmark for future improvements in diversity via management practices. Here, we used reduced representation sequencing (ddRADseq) data to report on the current genetic health of three remnant and seven translocated boodie (Bettongia lesueur) populations, now extinct on the Australian mainland. In addition, we used exon capture data from seven historical mainland specimens and a subset of contemporary samples to compare pre-decline and current diversity. Both data sets showed the significant impact of population founder source (whether multiple or single) on the genetic diversity of translocated populations. Populations founded by animals from multiple sources showed significantly higher genetic diversity than the natural remnant and single-source translocation populations, and we show that by mixing the most divergent populations, exon capture heterozygosity was restored to levels close to that observed in pre-decline mainland samples. Relatedness estimates were surprisingly low across all contemporary populations and there was limited evidence of inbreeding. Our results show that a strategy of genetic mixing has led to successful conservation outcomes for the species in terms of increasing genetic diversity and provides strong rationale for mixing as a management strategy.

8.
Mol Phylogenet Evol ; 189: 107927, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714443

RESUMO

Rapid divergence and subsequent reoccurring patterns of gene flow can complicate our ability to discern phylogenetic relationships among closely related species. To what degree such patterns may differ across the genome can provide an opportunity to extrapolate better how life history constraints may influence species boundaries. By exploring differences between autosomal and Z (or X) chromosomal-derived phylogenetic patterns, we can better identify factors that may limit introgression despite patterns of incomplete lineage sorting among closely related taxa. Here, using a whole-genome resequencing approach coupled with an exhaustive sampling of subspecies within the recently divergent prairie grouse complex (genus: Tympanuchus), including the extinct Heath Hen (T. cupido cupido), we show that their phylogenomic history differs depending on autosomal or Z-chromosome partitioned SNPs. Because the Heath Hen was allopatric relative to the other prairie grouse taxa, its phylogenetic signature should not be influenced by gene flow. In contrast, all the other extant prairie grouse taxa, except Attwater's Prairie-chicken (T. c. attwateri), possess overlapping contemporary geographic distributions and have been known to hybridize. After excluding samples that were likely translocated prairie grouse from the Midwest to the eastern coastal states or their resulting hybrids with mainland Heath Hens, species tree analyses based on autosomal SNPs consistently identified a paraphyletic relationship with regard to the Heath Hen with Lesser Prairie-chicken (T. pallidicinctus) sister to Greater Prairie-chicken (T. c. pinnatus) regardless of genic or intergenic partitions. In contrast, species trees based on the Z-chromosome were consistent with Heath Hen sister to a clade that included its conspecifics, Greater and Attwater's Prairie-chickens (T. c. attwateri). These results were further explained by historic gene flow, as shown with an excess of autosomal SNPs shared between Lesser and Greater Prairie-chickens but not with the Z-chromosome. Phylogenetic placement of Sharp-tailed Grouse (T. phasianellus), however, did not differ among analyses and was sister to a clade that included all other prairie grouse despite low levels of autosomal gene flow with Greater Prairie-chicken. These results, along with strong sexual selection (i.e., male hybrid behavioral isolation) and a lek breeding system (i.e., high variance in male mating success), are consistent with a pattern of female-biased introgression between prairie grouse taxa with overlapping geographic distributions. Additional study is warranted to explore how genomic components associated with the Z-chromosome influence the phenotype and thereby impact species limits among prairie grouse taxa despite ongoing contemporary gene flow.


Assuntos
Galinhas , Pradaria , Animais , Feminino , Filogenia
9.
Mol Phylogenet Evol ; 178: 107651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306995

RESUMO

Uropeltidae is a clade of small fossorial snakes (ca. 64 extant species) endemic to peninsular India and Sri Lanka. Uropeltid taxonomy has been confusing, and the status of some species has not been revised for over a century. Attempts to revise uropeltid systematics and undertake evolutionary studies have been hampered by incompletely sampled and incompletely resolved phylogenies. To address this issue, we take advantage of historical museum collections, including type specimens, and apply genome-wide shotgun (GWS) sequencing, along with recent field sampling (using Sanger sequencing) to establish a near-complete multilocus species-level phylogeny (ca. 87% complete at species level). This results in a phylogeny that supports the monophyly of all genera (if Brachyophidium is considered a junior synonym of Teretrurus), and provides a firm platform for future taxonomic revision. Sri Lankan uropeltids are probably monophyletic, indicating a single colonisation event of this island from Indian ancestors. However, the position of Rhinophis goweri (endemic to Eastern Ghats, southern India) is unclear and warrants further investigation, and evidence that it may nest within the Sri Lankan radiation indicates a possible recolonisation event. DNA sequence data and morphology suggest that currently recognised uropeltid species diversity is substantially underestimated. Our study highlights the benefits of integrating museum collections in molecular genetic analyses and their role in understanding the systematics and evolutionary history of understudied organismal groups.


Assuntos
Museus , Serpentes , Animais , Filogenia , Serpentes/genética , Sequência de Bases , Sri Lanka
10.
Mol Phylogenet Evol ; 185: 107822, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37220800

RESUMO

Natural history collections contain specimens that provide important insights into studies of ecology and evolution. With the advancement of high-throughput sequencing, historical DNA (hDNA) from museum specimens has become a valuable source of genomic data to study the evolutionary history of organisms. Low-coverage whole genome sequencing (WGS) has been increasingly applied to museum specimens for analyzing organelle genomes, but is still uncommon for genotyping the nuclear DNA fraction. In this study, we applied low-coverage WGS to phylogenomic analyses of parrots in the genus Agapornis by including both modern samples and historical specimens of âˆ¼100-year-old. Agapornis are small-sized African and Malagasy parrots with diverse characters. Earlier phylogenetic studies failed to resolve the positions of some key lineages, prohibiting a robust interpretation of the biogeography and evolution of these African parrots. Here, we demonstrated the use of low-coverage WGS for generating both mitochondrial and nuclear genomic data, and evaluated data quality differences between modern and historical samples. Our resolved Agapornis phylogeny indicates the ancestor of Agapornis likely colonized Madagascar from Australasia by trans-oceanic dispersal events before dispersing to the African continent. Genome-wide SNPs also allowed us to identify the parental origins of hybrid Agapornis individuals. This study demonstrates the potential of applying low-coverage WGS to phylogenomics and population genomics analyses and illustrates how including historical museum specimens can address outstanding questions regarding the evolutionary history of contemporary lineages.


Assuntos
Agapornis , Humanos , Animais , Idoso de 80 Anos ou mais , Filogenia , Agapornis/genética , Sequenciamento Completo do Genoma , Genômica , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala
11.
Mol Biol Evol ; 38(1): 48-57, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32667997

RESUMO

Direct comparisons between historical and contemporary populations allow for detecting changes in genetic diversity through time and assessment of the impact of habitat fragmentation. Here, we determined the genetic architecture of both historical and modern lions to document changes in genetic diversity over the last century. We surveyed microsatellite and mitochondrial genome variation from 143 high-quality museum specimens of known provenance, allowing us to directly compare this information with data from several recently published nuclear and mitochondrial studies. Our results provide evidence for male-mediated gene flow and recent isolation of local subpopulations, likely due to habitat fragmentation. Nuclear markers showed a significant decrease in genetic diversity from the historical (HE = 0.833) to the modern (HE = 0.796) populations, whereas mitochondrial genetic diversity was maintained (Hd = 0.98 for both). Although the historical population appears to have been panmictic based on nDNA data, hierarchical structure analysis identified four tiers of genetic structure in modern populations and was able to detect most sampling locations. Mitogenome analyses identified four clusters: Southern, Mixed, Eastern, and Western and were consistent between modern and historically sampled haplotypes. Within the last century, habitat fragmentation caused lion subpopulations to become more geographically isolated as human expansion changed the African landscape. This resulted in an increase in fine-scale nuclear genetic structure and loss of genetic diversity as lion subpopulations became more differentiated, whereas mitochondrial structure and diversity were maintained over time.


Assuntos
Distribuição Animal , Ecossistema , Variação Genética , Leões/genética , África , Animais , Feminino , Genoma Mitocondrial , Masculino , Filogeografia
12.
Mol Phylogenet Evol ; 175: 107559, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803448

RESUMO

As phylogenomics focuses on comprehensive taxon sampling at the species and population/subspecies levels, incorporating genomic data from historical specimens has become increasingly common. While historical samples can fill critical gaps in our understanding of the evolutionary history of diverse groups, they also introduce additional sources of phylogenomic uncertainty, making it difficult to discern novel evolutionary relationships from artifacts caused by sample quality issues. These problems highlight the need for improved strategies to disentangle artifactual patterns from true biological signal as historical specimens become more prevalent in phylogenomic datasets. Here, we tested the limits of historical specimen-driven phylogenomics to resolve subspecies-level relationships within a highly polytypic family, the New World quails (Odontophoridae), using thousands of ultraconserved elements (UCEs). We found that relationships at and above the species-level were well-resolved and highly supported across all analyses, with the exception of discordant relationships within the two most polytypic genera which included many historical specimens. We examined the causes of discordance and found that inferring phylogenies from subsets of taxa resolved the disagreements, suggesting that analyzing subclades can help remove artifactual causes of discordance in datasets that include historical samples. At the subspecies-level, we found well-resolved geographic structure within the two most polytypic genera, including the most polytypic species in this family, Northern Bobwhites (Colinus virginianus), demonstrating that variable sites within UCEs are capable of resolving phylogenetic structure below the species level. Our results highlight the importance of complete taxonomic sampling for resolving relationships among polytypic species, often through the inclusion of historical specimens, and we propose an integrative strategy for understanding and addressing the uncertainty that historical samples sometimes introduce to phylogenetic analyses.


Assuntos
Genoma , Genômica , Animais , Evolução Biológica , Genômica/métodos , Filogenia , Codorniz
13.
Mol Phylogenet Evol ; 167: 107346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763069

RESUMO

Five ecologically and phenotypically divergent ecomorphs of the genus Salmo are known from a landlocked alpine lake in the Caucasus, Lake Sevan. It is an example of sympatric diversification within a species-rich lineage with predominate mode of speciation being allopatric. The diversification of Sevan trouts was accompanied by spawning resource partitioning. Four lacustrine ecomorphs with different temporal-spatial spawning strategies and divergent morphology and coloration evolved along with a fifth ecomorph, brook trout, inhabiting the tributaries. Unfortunately, the Sevan trout diversity was almost destroyed by human activity, with two ecomorphs becoming extinct in the 1980s. We performed reconstruction of the evolutionary history of Sevan trouts based on high-throughput sequencing of both contemporary and historical DNA (∼ 50 y.o.) of all Sevan trout ecomorphs. Our study of complete mitogenomes along with genome-wide SNP data revealed the monophyly of four lacustrine ecomorphs and local brook trout, all derived from the anadromous form Caspian salmon, S. caspius. The species tree suggests a scenario of stepwise evolution from riverine to lacustrine spawning. Three genomic clusters were revealed, of which two refer to the riverine and lacustrine spawners within the flock of Sevan trouts (with FST value = 0.069). A few SNP outliers under selection were discovered that could be responsible for assortative mating based on visual recognition. The Holocene climatic oscillations and the desiccation of tributaries could have played an important role in the origin of lacustrine spawning. The relationships between lacustrine ecomorphs were not yet fully resolved. This radiation warrants further investigation.


Assuntos
Genômica , Truta , Animais , Lagos , Filogenia , Simpatria , Truta/genética
14.
Ann Bot ; 129(7): 857-868, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670810

RESUMO

BACKGROUND AND AIMS: Habitat degradation and landscape fragmentation dramatically lower population sizes of rare plant species. Decreasing population sizes may, in turn, negatively affect genetic diversity and reproductive fitness, which can ultimately lead to local extinction of populations. Although such extinction vortex dynamics have been postulated in theory and modelling for decades, empirical evidence from local extinctions of plant populations is scarce. In particular, comparisons between current vs. historical genetic diversity and differentiation are lacking despite their potential to guide conservation management. METHODS: We studied the population genetic signatures of the local extinction of Biscutella laevigata subsp. gracilis populations in Central Germany. We used microsatellites to genotype individuals from 15 current populations, one ex situ population, and 81 herbarium samples from five extant and 22 extinct populations. In the current populations, we recorded population size and fitness proxies, collected seeds for a germination trial and conducted a vegetation survey. The latter served as a surrogate for habitat conditions to study how habitat dissimilarity affects functional connectivity among the current populations. KEY RESULTS: Bayesian clustering revealed similar gene pool distribution in current and historical samples but also indicated that a distinct genetic cluster was significantly associated with extinction probability. Gene flow was affected by both the spatial distance and floristic composition of population sites, highlighting the potential of floristic composition as a powerful predictor of functional connectivity which may promote decision-making for reintroduction measures. For an extinct population, we found a negative relationship between sampling year and heterozygosity. Inbreeding negatively affected germination. CONCLUSIONS: Our study illustrates the usefulness of historical DNA to study extinction vortices in threatened species. Our novel combination of classical population genetics together with data from herbarium specimens, an ex situ population and a germination trial underlines the need for genetic rescue measures to prevent extinction of B. laevigata in Central Germany.


Assuntos
Fluxo Gênico , Genética Populacional , Teorema de Bayes , Conservação dos Recursos Naturais , Extinção Biológica , Variação Genética , Endogamia , Densidade Demográfica
15.
Anim Genet ; 53(6): 821-828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36043357

RESUMO

We used historical DNA samples to examine the history of a native horse breed, the Finnhorse. Samples were collected from private collections, museums, schools and excavations, representing the times prior to, during, and after the foundation of the breed; from the end of the 19th century and throughout the 20th century. We sequenced a fragment of mitochondrial DNA from these historical samples to study the history and evolution of maternal lineages of horses back to the early days of the breed, compared the mitochondrial DNA sequence diversity of different historical periods and modern day Finnhorses, estimated the effective population sizes, and searched for both temporal and geographic population genetic structure. We observed high maternal haplotype and nucleotide diversity at the time during the foundation of the breed, and a decrease in both measures during 1931-1970. In addition, we observed losses of some haplotypes present in the early stages of the breed. There was only slight evidence of geographical or temporal population structure. This study is, to our knowledge, the first to use such temporal sampling to reveal the history of a specific animal breed.


Assuntos
Variação Genética , Museus , Cavalos/genética , Animais , Artefatos , Análise de Sequência de DNA/veterinária , DNA Mitocondrial/genética , Haplótipos , Filogenia
16.
Proc Biol Sci ; 288(1944): 20201945, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529556

RESUMO

Species are being lost at an unprecedented rate during the Anthropocene. Progress has been made in clarifying how species traits influence their propensity to go extinct, but the role historical demography plays in species loss or persistence is unclear. In eastern North America, five charismatic landbirds went extinct last century, and the causes of their extinctions have been heavily debated. Although these extinctions are most often attributed to post-colonial human activity, other factors such as declining ancestral populations prior to European colonization could have made these species particularly susceptible. We used population genomic data from these extinct birds and compared them with those from four codistributed extant species. We found extinct species harboured lower genetic diversity and effective population sizes than extant species, but both extinct and non-extinct birds had similar demographic histories of population expansion. These demographic patterns are consistent with population size changes associated with glacial-interglacial cycles. The lack of support for overall population declines during the Pleistocene corroborates the view that, although species that went extinct may have been vulnerable due to low diversity or small population size, their disappearance was driven by human activities in the Anthropocene.


Assuntos
Aves , Extinção Biológica , Animais , Demografia , Humanos , Densidade Demográfica , Estados Unidos
17.
Proc Biol Sci ; 288(1949): 20203147, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878928

RESUMO

Intra-species genetic homogenization arising from anthropogenic impacts is a major threat to biodiversity. However, few taxa have sufficient historical material to systematically quantify long-term genetic changes. Using archival DNA collected over approximately 100 years, we assessed spatio-temporal genetic change in Atlantic salmon populations across the Baltic Sea, an area heavily impacted by hydropower exploitation and associated with large-scale mitigation stocking. Analysis was carried out by screening 82 SNPs in 1680 individuals from 13 Swedish rivers. We found an overall decrease in genetic divergence and diminished isolation by distance among populations, strongly indicating genetic homogenization over the past century. We further observed an increase in genetic diversity within populations consistent with increased gene flow. The temporal genetic change was lower in larger wild populations than in smaller wild and hatchery-reared ones, indicating that larger populations have been able to support a high number of native spawners in relation to immigrants. Our results demonstrate that stocking practices of salmon in the Baltic Sea have led to the homogenization of populations over the last century, potentially compromising their ability to adapt to environmental change. Stocking of reared fish is common worldwide, and our study is a cautionary example of the potentially long-term negative effects of such activities.


Assuntos
Salmo salar , Animais , Países Bálticos , DNA , Fluxo Gênico , Humanos , Rios , Salmo salar/genética
18.
Mol Ecol ; 30(23): 6340-6354, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34161633

RESUMO

The endangered Mexican wolf (Canis lupus baileyi) is known to carry exceedingly low levels of genetic diversity. This could be (i) the result of long-term evolutionary patterns as they exist at the southernmost limit of the species distribution at a relatively reduced effective size, or (ii) due to rapid population decline caused by human persecution over the last century. If the former, purifying selection is expected to have minimized the impact of inbreeding. If the latter, rapid and recent declines in genetic diversity may have resulted in severe fitness consequences. To differentiate these hypotheses, we conducted comparative whole-genome analyses of five historical Mexican wolves (1907-1917) and 18 contemporary Mexican and grey wolves from North America and Eurasia. Based on whole-genome data, historical and modern Mexican wolves together form a discrete unit. Moreover, we found that modern Mexican wolves have reduced genetic diversity and increased inbreeding relative to the historical population, which was widespread across the southwestern United States and not restricted to Mexico as previously assumed. Finally, although Mexican wolves have evolved in sympatry with coyotes (C. latrans), we observed lower introgression between historical Mexican wolves and coyotes than with modern Mexican wolves, despite similarities in body size. Taken together, our data show that recent population declines probably caused the reduced level of genetic diversity, but not the observed differentiation of the Mexican wolves from other North American wolves.


Assuntos
Coiotes , Lobos , Animais , Coiotes/genética , Variação Genética , Genoma , México , Lobos/genética
19.
BMC Evol Biol ; 20(1): 77, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590930

RESUMO

BACKGROUND: Tree squirrels (Sciuridae, Sciurini), in particular the highly diverse Neotropical lineages, are amongst the most rapidly diversifying branches of the mammal tree of life but also some of the least known. Negligence of this group by systematists is likely a product of the difficulties in assessing morphological informative traits and of the scarcity or unavailability of fresh tissue samples for DNA sequencing. The highly discrepant taxonomic arrangements are a consequence of the lack of phylogenies and the exclusive phenotypic-based classifications, which can be misleading in a group with conservative morphology. Here we used high-throughput sequencing and an unprecedented sampling of museum specimens to provide the first comprehensive phylogeny of tree squirrels, with a special emphasis on Neotropical taxa. RESULTS: We obtained complete or partial mitochondrial genomes from 232 historical and modern samples, representing 40 of the 43 currently recognized species of Sciurini. Our phylogenetic analyses-performed with datasets differing on levels of missing data and taxa under distinct analytical methods-strongly support the monophyly of Sciurini and consistently recovered 12 major clades within the tribe. We found evidence that the diversity of Neotropical tree squirrels is underestimated, with at least six lineages that represent taxa to be named or revalidated. Ancestral state reconstructions of number of upper premolars and number of mammae indicated that alternative conditions of both characters must have evolved multiple times throughout the evolutionary history of tree squirrels. CONCLUSIONS: Complete mitogenomes were obtained from museum specimens as old as 120 years, reinforcing the potential of historical samples for phylogenetic inferences of elusive lineages of the tree of life. None of the taxonomic arrangements ever proposed for tree squirrels fully corresponded to our phylogenetic reconstruction, with only a few of the currently recognized genera recovered as monophyletic. By investigating the evolution of two morphological traits widely employed in the taxonomy of the group, we revealed that their homoplastic nature can help explain the incongruence between phylogenetic results and the classification schemes presented so far. Based on our phylogenetic results we suggest a tentative supraspecific taxonomic arrangement for Sciurini, employing 13 generic names used in previous taxonomic classifications.


Assuntos
Variação Genética , Genoma Mitocondrial/genética , Fenótipo , Sciuridae/classificação , Sciuridae/genética , Animais , Filogenia
20.
BMC Genomics ; 21(1): 188, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111157

RESUMO

BACKGROUND: Next generation sequencing (NGS) can recover DNA data from valuable extant and extinct museum specimens. However, archived or preserved DNA is difficult to sequence because of its fragmented, damaged nature, such that the most successful NGS methods for preserved specimens remain sub-optimal. Improving wet-lab protocols and comprehensively determining the effects of sample age on NGS library quality are therefore of vital importance. Here, I examine the relationship between sample age and several indicators of library quality following targeted NGS sequencing of ~ 1300 loci using 271 samples of pinned moth specimens (Helicoverpa armigera) ranging in age from 5 to 117 years. RESULTS: I find that older samples have lower DNA concentrations following extraction and thus require a higher number of indexing PCR cycles during library preparation. When sequenced reads are aligned to a reference genome or to only the targeted region, older samples have a lower number of sequenced and mapped reads, lower mean coverage, and lower estimated library sizes, while the percentage of adapters in sequenced reads increases significantly as samples become older. Older samples also show the poorest capture success, with lower enrichment and a higher improved coverage anticipated from further sequencing. CONCLUSIONS: Sample age has significant, measurable impacts on the quality of NGS data following targeted enrichment. However, incorporating a uracil-removing enzyme into the blunt end-repair step during library preparation could help to repair DNA damage, and using a method that prevents adapter-dimer formation may result in improved data yields.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Mariposas/genética , Manejo de Espécimes/efeitos adversos , Animais , Dano ao DNA , Confiabilidade dos Dados , Fósseis , Museus , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA