Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Med Sci ; 20(8): 1079-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484809

RESUMO

N4-acetylcytidine (ac4C) is a lately discovered nucleotide modification that has been shown to be closely implicated in cancer. N-acetyltransferase10(NAT10) acts as an enzyme that regulates mRNA acetylation modifications. Currently, the role of NAT10-mediated RNA acetylation modification in cervical cancer remains to be elucidated. On the basis of transcriptome analysis of TCGA and GEO open datasets (GSE52904, GSE29570, GSE122697), NAT10 is upregulated in cervical cancer tissues and correlated with poor prognosis. Knockdown of NAT10 suppressed the cell proliferation, invasion, and migration of cervical cancer cells. The in vivo oncogenic function of NAT10 was also confirmed in xenograft models. Combined RNA-seq and acRIP-seq analysis revealed HNRNPUL1 as the target of NAT10 in cervical cancer. NAT10 positively regulate HNRNPUL1 expression by promoting ac4C modification and stability of HNRNPUL1 mRNA. Furthermore, depletion of HNRNPUL1 suppressed the cell division, invasion, and migration of cervical cancer. HNRNPUL1 overexpression partially restored cellular function in cervical cancer cells with NAT10 knockdown. Thus, this study demonstrates that NAT10 contributes to cervical cancer progression by enhancing HNRNPUL1 mRNA stability via ac4C modification, and NAT10-ac4C-HNRNPUL1 axis might be a potential target for cervical cancer therapy.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Acetilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo
2.
Exp Cell Res ; 409(1): 112891, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688610

RESUMO

Cisplatin (CDDP) is widely used for chemotherapy of esophageal squamous cell carcinoma (ESCC) but the drug resistance limits its therapeutic benefit. Heterogeneous nuclear ribonucleoprotein U-like 1 (HNRNPUL1) belongs to the family of RNA-binding proteins (RBPs) and is involved in DNA damage repair. To investigate whether and how HNRNPUL1 affects CDDP resistance of ESCC, we evaluated the expression of HNRNPUL1 and found that it was associated with recurrence in ESCC patients receiving postoperative platinum-based chemotherapy and was an independent prognostic factor for disease-free survival (DFS). Besides, we showed that the reduced expression of HNRNPUL1 enhanced the CDDP sensitivity of ESCC cells. Furthermore, RNA immunoprecipitation coupled with high-throughput sequencing (RIP-seq) were performed and a range of HNRNPUL1-binding RNAs influenced by CDDP treatment were identified followed by bioinformatics analysis. In terms of mechanism, we found that HNRNPUL1 inhibited CDDP sensitivity of ESCC cells by regulating the CDDP sensitivity-inhibited circular RNA (circRNA) MAN1A2 formation. Taken together, our results first demonstrated the role of HNRNPUL1 in CDDP resistance of ESCC and suggested that HNRNPUL1 may be a potential target of ESCC chemotherapy.


Assuntos
Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteínas Nucleares/genética , RNA Circular/genética , Fatores de Transcrição/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade
3.
EMBO Rep ; 16(11): 1520-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26412854

RESUMO

Long non-coding RNAs (lncRNAs) are important players in diverse biological processes. Upon DNA damage, cells activate a complex signaling cascade referred to as the DNA damage response (DDR). Using a microarray screen, we identify here a novel lncRNA, DDSR1 (DNA damage-sensitive RNA1), which is induced upon DNA damage. DDSR1 induction is triggered in an ATM-NF-κB pathway-dependent manner by several DNA double-strand break (DSB) agents. Loss of DDSR1 impairs cell proliferation and DDR signaling and reduces DNA repair capacity by homologous recombination (HR). The HR defect in the absence of DDSR1 is marked by aberrant accumulation of BRCA1 and RAP80 at DSB sites. In line with a role in regulating HR, DDSR1 interacts with BRCA1 and hnRNPUL1, an RNA-binding protein involved in DNA end resection. Our results suggest a role for the lncRNA DDSR1 in modulating DNA repair by HR.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Recombinação Homóloga , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação da Expressão Gênica , Genes BRCA1 , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Análise em Microsséries , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/isolamento & purificação , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
Discov Oncol ; 15(1): 419, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254804

RESUMO

Bladder cancer (BC) is a prevalent type of tumor in the urinary system, and it has been discovered that long non-coding RNA (lncRNA) plays a significant role in its occurrence and development. However, thus far, no reports have been published on the involvement of LINC00461 in BC. Here, we found that LINC00461 levels were upregulated in BC tissues and cell lines. Besides, knockdown of LINC00461 inhibited BC cell proliferation, migration, invasion through epithelial-mesenchymal transition (EMT), and slowed down tumor growth in vivo. Moreover, we found that LINC00461 regulated HNRNPUL1 expression through miR-518b sponge activity, and the miR-518 inhibitor could reverse the inhibitory effects of LINC00461 knockdown on BC cell proliferation, migration, and EMT. Our results suggest that LINC00461 may serve as a potential biomarker and therapeutic target for BC.

5.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325113

RESUMO

Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.


Assuntos
Splicing de RNA , Peixe-Zebra , Processamento Alternativo , Animais , Ribonucleoproteínas Nucleares Heterogêneas/genética , RNA/metabolismo , Splicing de RNA/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Biochim Biophys Acta Gene Regul Mech ; 1863(10): 194624, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798738

RESUMO

Chromatin modulation provides a key checkpoint for controlling cell cycle regulated gene networks. The replicative canonical histone genes are one such gene family under tight regulation during cell division. These genes are most highly expressed during S phase when histones are needed to chromatinize the new DNA template. While this fact has been known for a while, limited knowledge exists about the specific chromatin regulators controlling their temporal expression during cell cycle. Since histones and their associated mutations are emerging as major players in diseases such as cancer, identifying the chromatin factors modulating their expression is critical. The histone lysine tri-demethylase KDM4A is regulated over cell cycle and plays a direct role in DNA replication timing, site-specific rereplication, and DNA amplifications during S phase. Here, we establish an unappreciated role for the catalytically active KDM4A in directly regulating canonical replicative histone gene networks during cell cycle. Of interest, we further demonstrate that KDM4A interacts with proteins controlling histone expression and RNA processing (i.e., hnRNPUL1 and FUS/TLS). Together, this study provides a new function for KDM4A in modulating canonical histone gene expression.


Assuntos
Replicação do DNA , Regulação da Expressão Gênica , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Catálise , Epigênese Genética , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA