Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
2.
Mol Genet Genomics ; 298(6): 1377-1388, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37646857

RESUMO

Transposable elements (TEs) are DNA sequences capable of moving within the genome. Their distribution is very dynamic among organisms, and despite advances, there are still gaps in the understanding of the diversity and evolution of TEs in many insect species. In the case of Euschistus heros, considered the main stink bug in the soybean crop in Brazil, little is known about the participation of these elements. Therefore, the objective of the current work was to identify the different groups of transposable elements present in the E. heros transcriptome, evidencing their chromosomal distribution. Through RNA-Seq and de novo assembly, 60,009 transcripts were obtained, which were annotated locally via Blastn against specific databases. Of the 367 transcripts identified as TEs, 202 belong to Class II, with emphasis on the TIR order. Among Class I elements or retrotransposons, most were characterized as LINE. Phylogenetic analyses were performed with the protein domains, evidencing differences between Tc1-mariner sequences, which may be related to possible horizontal transfer events. The transposable elements that stood out in the transcriptome were selected for fluorescent in situ hybridization. DNA transposon probes hAT, Helitron, and Tc1-mariner showed mostly scattered signals, with the presence of some blocks. Retrotransposon probes Copia, Gypsy, Jockey, and RTE showed a more pulverized hybridization pattern, with the presence of small interstitial and/or terminal blocks. Studies like this one, integrating functional genomics and molecular cytogenetic tools, are essential to expanding knowledge about transcriptionally active mobile elements, and their behavior in the chromosomes.


Assuntos
Elementos de DNA Transponíveis , Transcriptoma , Transcriptoma/genética , Elementos de DNA Transponíveis/genética , Hibridização in Situ Fluorescente , Filogenia , Retroelementos , Cromossomos
3.
Ann Bot ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400416

RESUMO

BACKGROUND AND AIMS: Despite chromosomal evolution being one of the major drivers of diversification in plants, we do not yet have a clear view of how new chromosome rearrangements become fixed within populations, which is a crucial step forward for understanding chromosomal speciation. METHODS: In this study, we test the role of genetic drift in the establishment of new chromosomal variants in the context of hybrid dysfunction models of chromosomal speciation. We genotyped a total of 178 individuals from seven populations (plus 25 seeds from one population) across the geographic range of Carex helodes (Cyperaceae). We also characterized karyotype geographic patterns of the species across the distribution range. For one of the populations, we performed a detailed study of the fine scale, local spatial distribution of its individuals and their genotypes and karyotypes. KEY RESULTS: Synergistically, phylogeographic and karyotypic evidence show two main genetic groups: southwestern Iberian Peninsula vs. northwestern African populations, and within Europe our results suggest a west-to-east expansion with signals of genetic bottlenecks. Additionally, we have inferred a pattern of descending dysploidy, plausibly as a result of a west-to-east process of post-glacial colonization in Europe. CONCLUSIONS: Our results give experimental support to the role of geographic isolation, drift, and inbreeding in the establishment of new karyotypes which is key in the speciation models of hybrid dysfunction.

4.
Ann Bot ; 131(1): 143-156, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226733

RESUMO

BACKGROUND AND AIMS: It is unclear how widespread polyploidy is throughout the largest holocentric plant family - the Cyperaceae. Because of the prevalence of chromosomal fusions and fissions, which affect chromosome number but not genome size, it can be impossible to distinguish if individual plants are polyploids in holocentric lineages based on chromosome count data alone. Furthermore, it is unclear how differences in genome size and ploidy levels relate to environmental correlates within holocentric lineages, such as the Cyperaceae. METHODS: We focus our analyses on tribe Schoeneae, and more specifically the southern African clade of Schoenus. We examine broad-scale patterns of genome size evolution in tribe Schoeneae and focus more intensely on determining the prevalence of polyploidy across the southern African Schoenus by inferring ploidy level with the program ChromEvol, as well as interpreting chromosome number and genome size data. We further investigate whether there are relationships between genome size/ploidy level and environmental variables across the nutrient-poor and summer-arid Cape biodiversity hotspot. KEY RESULTS: Our results show a large increase in genome size, but not chromosome number, within Schoenus compared to other species in tribe Schoeneae. Across Schoenus, there is a positive relationship between chromosome number and genome size, and our results suggest that polyploidy is a relatively common process throughout the southern African Schoenus. At the regional scale of the Cape, we show that polyploids are more often associated with drier locations that have more variation in precipitation between dry and wet months, but these results are sensitive to the classification of ploidy level. CONCLUSIONS: Polyploidy is relatively common in the southern African Schoenus, where a positive relationship is observed between chromosome number and genome size. Thus, there may be a high incidence of polyploidy in holocentric plants, whose cell division properties differ from monocentrics.


Assuntos
Cyperaceae , Cyperaceae/genética , Ploidias , Poliploidia , Cromossomos de Plantas , Biodiversidade , Genoma de Planta , Filogenia
5.
Med Vet Entomol ; 37(2): 316-329, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36543747

RESUMO

Triatoma maculata (Hemiptera, Reduviidae, Triatominae) occurs across dry-to-semiarid ecoregions of northern South America, where it transmits Trypanosoma cruzi, causative agent of Chagas disease. Using 207 field-caught specimens from throughout the species' range, mitochondrial(mt) DNA sequence data, and cytogenetics, we investigated inter-population genetic diversity and the phylogenetic affinities of T. maculata. Mitochondrial DNA sequence analyses (cytb and nd4) disclosed a monophyletic T. maculata clade encompassing three distinct geographic groups: Roraima formation (Guiana shield), Orinoco basin, and Magdalena basin (trans-Andean). Between-group cytb distances (11.0-12.8%) were larger than the ~7.5% expected for sister Triatoma species; the most recent common ancestor of these T. maculata groups may date back to the late Miocene. C-heterochromatin distribution and the sex-chromosome location of 45S ribosomal DNA clusters both distinguished Roraima bugs from Orinoco and Magdalena specimens. Cytb genealogies reinforced that T. maculata is not sister to Triatoma pseudomaculata and probably represents an early (middle-late Miocene) offshoot of the 'South American Triatomini lineage'. In sum, we report extensive genetic diversity and deep phylogeographic structuring in T. maculata, suggesting that it may consist of a complex of at least three sibling taxa. These findings have implications for the systematics, population biology, and perhaps medical relevance of T. maculata sensu lato.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Triatoma/genética , Filogenia , Doença de Chagas/veterinária , Trypanosoma cruzi/genética , DNA Mitocondrial/genética , Análise Citogenética/veterinária
6.
Cytogenet Genome Res ; 162(5): 262-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36689925

RESUMO

Mitotic chromosomes of butterflies, which look like dots or short filaments in most published data, are generally considered to lack localised centromeres and thus to be holokinetic. This particularity, observed in a number of other invertebrates, is associated with meiotic particularities known as "inverted meiosis," in which the first division is equational, i.e., centromere splitting-up and segregation of sister chromatids instead of homologous chromosomes. However, the accurate analysis of butterfly chromosomes is difficult because (1) their size is very small, equivalent to 2 bands of a mammalian metaphase chromosome, and (2) they lack satellite DNA/heterochromatin in putative centromere regions and therefore marked primary constrictions. Our improved conditions for basic chromosome preparations, here applied to 6 butterfly species belonging to families Nymphalidae and Pieridae challenges the holocentricity of their chromosomes: in spite of the absence of primary constrictions, sister chromatids are recurrently held together at definite positions during mitotic metaphase, which makes possible to establish karyotypes composed of acrocentric and submetacentric chromosomes. The total number of chromosomes per karyotype is roughly inversely proportional to that of non-acrocentric chromosomes, which suggests the occurrence of frequent robertsonian-like fusions or fissions during evolution. Furthermore, the behaviour and morphological changes of chromosomes along the various phases of meiosis do not seem to differ much from those of canonical meiosis. In particular, at metaphase II chromosomes clearly have 2 sister chromatids, which refutes that anaphase I was equational. Thus, we propose an alternative mechanism to holocentricity for explaining the large variations in chromosome numbers in butterflies: (1) in the ancestral karyotype, composed of about 62 mostly acrocentric chromosomes, the centromeres, devoid of centromeric heterochromatin/satellite DNA, were located at contact with telomeric heterochromatin; (2) the instability of telomeric heterochromatin largely contributed to drive the multiple rearrangements, principally chromosome fusions, which occurred during butterfly evolution.


Assuntos
Borboletas , Humanos , Animais , Borboletas/genética , Heterocromatina , DNA Satélite , Cromossomos , Centrômero , Meiose , Cromátides , Cariotipagem , Mamíferos/genética
7.
Genetica ; 150(5): 235-246, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35543891

RESUMO

Known as "electric-light bugs", belostomatids potentially act as agents of biological control. The Belostoma genus has holokinetic chromosomes, interspecific variation in diploid number, sex chromosome system and DNA content. Thus, the chromosomal complement, the accumulation of constitutive heterochromatin and the distribution of rDNA clusters by fluorescence in situ hybridization (FISH) in Belostoma angustum (BAN), Belostoma sanctulum (BSA), and Belostoma nessimiani (BNE) were evaluated. In addition, a comparative analysis of the DNA content of these species and B. estevezae (BES) was performed. BES has the highest Belostoma DNA content, while BSA has the lowest. BAN showed 2n = 29 + X1X2Y, while BSA and BNE had 2n = 14 + XY. BSA showed 18S rDNA markings on sex chromosomes, while BNE and BAN did on autosomes. The difference between BSA and BNE occurs because of the possible movement of the rDNA cluster in BNE. We suggest the occurrence of fusion in the autosomes of BSA and BNE, and fragmentation in the sex chromosomes in BAN. Also, the genome size of 1-2 pg represents a haploid DNA content of a common ancestor, from which the genomes of BES and BAN had evolved by gene duplication and heterochromatinization events.


Assuntos
Heterópteros , Ácidos Alcanossulfônicos , Animais , DNA Ribossômico/genética , Tamanho do Genoma , Heterocromatina/genética , Heterópteros/genética , Hibridização in Situ Fluorescente , Cromossomos Sexuais
8.
Ann Bot ; 130(7): 999-1014, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36342743

RESUMO

BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Filogenia , Cromossomos de Plantas/genética , Tamanho do Genoma , Genoma de Planta/genética
9.
Med Vet Entomol ; 36(1): 66-80, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730244

RESUMO

The subfamily Triatominae (Hemiptera-Reduviidae) includes more than 150 blood-sucking species, potential vectors of the protozoan Trypanosoma cruzi, causative agent of Chagas disease. A distinctive cytogenetic characteristic of this group is the presence of extremely stable chromosome numbers. Unexpectedly, the analyses of the chromosomal location of ribosomal gene clusters and other repetitive sequences place Triatominae as a significantly diverse hemipteran subfamily. Here, we advance the understanding of Triatominae chromosomal evolution through the analysis of the 45S rDNA cluster chromosomal location in 92 Triatominae species. We found the 45S rDNA clusters in one to four loci per haploid genome with different chromosomal patterns: On one or two autosomes, on one, two or three sex chromosomes, on the X chromosome plus one to three autosomes. The movement of 45S rDNA clusters is discussed in an evolutionary context. Our results illustrate that rDNA mobility has been relatively common in the past and in recent evolutionary history of the group. The high frequency of rDNA patterns involving autosomes and sex chromosomes among closely related species could affect genetic recombination and the viability of hybrid populations, which suggests that the mobility of rDNA clusters could be a driver of species diversification.


Assuntos
Doença de Chagas , Reduviidae , Triatominae , Animais , Doença de Chagas/veterinária , Cromossomos , DNA Ribossômico/genética , Triatominae/genética
10.
New Phytol ; 229(4): 2365-2377, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090498

RESUMO

The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.


Assuntos
Cuscuta , Centrômero/genética , Cuscuta/genética , Evolução Molecular , Genoma de Planta/genética , Estilo de Vida , Filogenia
11.
Ann Bot ; 126(5): 883-889, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32582956

RESUMO

BACKGROUND AND AIMS: Ultraviolet-B radiation (UV-B) radiation damages the DNA, cells and photosynthetic apparatus of plants. Plants commonly prevent this damage by synthetizing UV-B-protective compounds. Recent laboratory experiments in Arabidopsis and cucumber have indicated that plants can also respond to UV-B stress with endopolyploidy. Here we test the generality of this response in natural plant populations, considering their monocentric or holocentric chromosomal structure. METHODS: We measured the endopolyploidy index (flow cytometry) and the concentration of UV-B-protective compounds in leaves of 12 herbaceous species (1007 individuals) from forest interiors and neighbouring clearings where they were exposed to increased UV-B radiation (103 forest + clearing populations). We then analysed the data using phylogenetic mixed models. KEY RESULTS: The concentration of UV-B protectives increased with UV-B doses estimated from hemispheric photographs of the sky above sample collection sites, but the increase was more rapid in species with monocentric chromosomes. Endopolyploidy index increased with UV-B doses and with concentrations of UV-B-absorbing compounds only in species with monocentric chromosomes, while holocentric species responded negligibly. CONCLUSIONS: Endopolyploidy seems to be a common response to increased UV-B in monocentric plants. Low sensitivity to UV-B in holocentric species might relate to their success in high-UV-stressed habitats and corroborates the hypothesized role of holocentric chromosomes in plant terrestrialization.


Assuntos
Arabidopsis , Cromossomos , Humanos , Filogenia , Folhas de Planta , Raios Ultravioleta
12.
Mol Phylogenet Evol ; 135: 203-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30880144

RESUMO

Large-scale changes in chromosome number have been associated with diversification rate shifts in many lineages of plants. For instance, several ancient rounds of polyploidization events have been inferred to promote genomic differentiation and/or isolation and, consequently, angiosperm diversification. Dysploidy, although less studied, has been suggested to also play an important role in angiosperm diversification. In this article, we aim to elucidate the role of chromosomal rearrangements on lineage diversification by analyzing a new comprehensive sedge (Cyperaceae) phylogenetic tree. Our null hypothesis is that the mode and tempo of chromosome evolution are to be homogeneous across the complete phylogeny. In order to discern patterns of diversification shifts and chromosome number changes within the family tree, we tested clade-specific chromosome evolution models for several subtrees according to previously reported increments of diversification rates. Results show that a complex, heterogeneous model composed of different clade-specific chromosome evolution transitions are significantly supported against the null hypothesis of a model with no chromosome number model transition events along the phylogeny. This could suggest a link between diversification and changes in chromosome number evolution although other possibilities are not discarded. Our methodological approach may allow identifying different patterns of chromosome evolution, as found for Cyperaceae, for other lineages at different evolutionary levels.


Assuntos
Cromossomos de Plantas/genética , Cyperaceae/genética , Evolução Molecular , Modelos Biológicos , Filogenia
13.
Genetica ; 146(6): 475-486, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30206751

RESUMO

The recently-revised subfamily Centruroidinae is part of the New World clade of buthid scorpions. In this study, we analyzed the cytogenetic characteristics of nine of the 10 Brazilian centruroidines, and one undescribed species of the genus Ischnotelson, using a phylogenetic approach to determine the chromosomal rearrangements responsible for the differentiation of karyotypes among the species. The cytogenetic data recorded in the present study supported the new taxonomic arrangement of the Centruroidinae, with all the species of the same genus sharing the same or similar diploid numbers, i.e., 2n = 20 or 22 in Troglorhopalurus lacrau and T. translucidus, 2n = 25 or 26 in Ischnotelson sp., I. guanambiensis and I. peruassu, and 2n = 28 in Jaguajir agamemnon, J. pintoi and J. rochae. The karyotype modelling in the ChromEvol software indicated 2n = 18 as the ancestral diploid number of the Centruroidinae. The differentiation of karyotypes among the centruroidine genera was based on increasing chromosome numbers resulting from progressive fission events. These changes probably occurred prior to the diversification of the genera Ischnotelson, Jaguajir, Physoctonus and Rhopalurus, and appear to have played a more important role in karyotype evolution at the intergeneric level than the interspecific one. However, the observed increase in diploid numbers was not accompanied by changes in the number or location of ribosomal genes or telomeric sequences. The identification of meiotic cells in female specimens also allowed us to discuss the mechanisms of achiasmatic meiosis in scorpions.


Assuntos
Evolução Molecular , Cariótipo , Escorpiões/genética , Animais , Feminino , Masculino , Meiose , Ploidias , Ribossomos/genética , Escorpiões/citologia , Telômero/genética
14.
Cytogenet Genome Res ; 153(4): 213-222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29495006

RESUMO

Mitotic and meiotic chromosomes from 2 taxa of the genus Melinaea, M. satevis cydon and M. "satevis" tarapotensis (Lepidoptera: Nymphalidae), and from hybrids produced in captivity were obtained using an improved spreading technique and were subsequently analyzed. In one of the taxa, the presence of trivalents and tetravalents at diakinesis/metaphase I is indicative of heterozygosity for multiple chromosome fusions or fissions, which might explain the highly variable number of chromosomes previously reported in this genus. Two large and complex multivalents were observed in the meiotic cells of the hybrid males (32 chromosomes) obtained from a cross between M. "s." tarapotensis (28 chromosomes) and M. s. cydon (40-43 chromosomes). The contribution of the 2 different haploid karyotypes to these complex figures during meiosis is discussed, and a taxonomic revision is proposed. We conclude that chromosome evolution is active and ongoing, that the karyotype of the common ancestor consisted of at least 48 chromosomes, and that evolution by chromosome fusion rather than fission is responsible for this pattern. Complex chromosome evolution in this genus may drive reproductive isolation and speciation, and highlights the difficulties inherent to the systematics of this group. We also show that Melinaea chromosomes, classically considered as holocentric, are attached to unique, rather than multiple, spindle fibers.


Assuntos
Borboletas/genética , Cromossomos/ultraestrutura , Evolução Molecular , Especiação Genética , Meiose/genética , Fuso Acromático/ultraestrutura , Animais , Cromossomos/genética , Feminino , Heterozigoto , Hibridização Genética , Cariotipagem , Masculino , Metáfase , Mitose/genética , Peru , Especificidade da Espécie , Espermatócitos/ultraestrutura
16.
BMC Genet ; 18(1): 35, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412934

RESUMO

BACKGROUND: Holocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them. RESULTS: This species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C 0 t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions. CONCLUSIONS: Chromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.


Assuntos
Heterocromatina/genética , Escorpiões/genética , Animais , Mapeamento Cromossômico , Sondas de DNA/genética , DNA Ribossômico/genética , Evolução Molecular , Heterocromatina/química , Heterocromatina/metabolismo , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Meiose , Família Multigênica , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais/química , Cromossomos Sexuais/genética
17.
Ann Bot ; 119(3): 409-416, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28025291

RESUMO

BACKGROUND AND AIMS: Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. KEY RESULTS: The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions.


Assuntos
Evolução Biológica , Droseraceae/genética , Genoma de Planta/genética , Composição de Bases/genética , Carnivoridade , Cromossomos de Plantas/genética , Variação Genética/genética , Filogenia
18.
J Hered ; 108(2): 184-193, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173180

RESUMO

The genus Belostoma, known colloquially as "giant water bugs," presents striking cytogenetic diversity and extensive chromosome variability. Notwithstanding, its karyotype evolution is not well understood. We analyzed 8 species of Belostoma (77 samples). The meiotic analysis revealed 2n = 14 + XY for Belostoma horvathi and Belostoma candidulum; 2n = 22 + XY for Belostoma cummings; 2n = 26 + X1X2Y for Belostoma dentatum, Belostoma elongatum, and Belostoma discretum; and 2n = 26 + X1X2X3Y for Belostoma testacopallidum and Belostoma dilatatum. All species showed holokinetic chromosomes. Based on heterochromatin distribution patterns and 18S rDNA, the species of the genus Belostoma were separated into four groups. The analysis of C0t-1 DNA showed that the repetitive DNA, partly composed of microsatellite DNA, was absent on the Y chromosome. Fluorescent in situ hybridization (FISH) using a microdissected X chromosome in species with simple sex system presents uniform hybridization in the nuclear region corresponding to the X chromosome. Species with multiple systems revealed discrete markings. The present data in conjunction with the existing literature led us to propose a new evolutionary hypothesis for the group, with an ancestral karyotype with a low diploid number, simple sex determination system, and nucleolus organizer regions (NORs) on the sex chromosomes. That karyotype would have originated other karyotypes through agmatoploidy, simploidy, heterochromatinization, and movement of the 18S rDNA.


Assuntos
Evolução Biológica , Heterópteros/classificação , Cariótipo , Animais , Brasil , Hibridização in Situ Fluorescente , Cariotipagem , Região Organizadora do Nucléolo/genética , RNA Ribossômico 18S/genética , Cromossomos Sexuais/genética
19.
Am J Bot ; 103(8): 1529-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27558707

RESUMO

PREMISE OF THE STUDY: Understanding the drivers of speciation is a central task of evolutionary biology. Chromosomal rearrangements are known to play an important role in species diversification, but the role of rearrangements of holocentric chromosomes-chromosomes without localized centromeres-is poorly understood. METHODS: We made numerous artificial crosses between Carex scoparia individuals of different diploid chromosome numbers and, for comparison, between individuals of the same chromosome number. We studied chromosome pairing and chromosomal rearrangements in the F1 individuals using light microscopy. We then estimated germination rates as a function of geographic distance, genetic distance, chromosome number differences in parents, and pairing irregularities in F1 individuals, using generalized least squares to fit alternative regression models. KEY RESULTS: The most informative predictors of germination rates in the F1 generation are chromosome number differences and minimum number of chromosome pairing irregularities in the F1 individuals. Genetic and geographic distances between parents are not significant predictors. CONCLUSIONS: Holocentric chromosomal rearrangements play an important role in postzygotic reproductive isolation in Carex through F1 hybrid inviability and sterility. Hybrid dysfunction seems to be a suitable model for chromosomal speciation when there are several chromosomal rearrangements between parents. However, we have not tested the hypothesis that genome rearrangements may also play an important role in suppressing recombination between cytogenetically divergent populations.


Assuntos
Carex (Planta)/fisiologia , Germinação/genética , Cariótipo , Isolamento Reprodutivo , Carex (Planta)/genética , Evolução Molecular , Rearranjo Gênico/genética , Geografia , Hibridização Genética/genética
20.
Zoolog Sci ; 31(9): 603-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25186932

RESUMO

Buthid scorpions exhibit a high variability in diploid number within genera and even within species. Cytogenetically, Buthidae differs from other families of Scorpiones based on its low diploid numbers, holocentric chromosomes, and complex chromosomal chains, which form during meiosis. In this study, we analyzed the distribution of the 45S ribosomal DNA (rDNA) genes in the mitotic and meiotic chromosomes of seven buthid species belonging to the genera Rhopalurus and Tityus with the ultimate goal of elucidating the chromosome organization in these scorpions. The chromosome number ranged from 2n=6 to 2n=28. Despite the high variance in diploid number, all species examined carried their 45S rDNA sites in the terminal region of exactly two chromosomes. Analyses of meiotic cells revealed 45S rDNA clusters in the chromosomal chains of Rhopalurus agamemnon, Tityus bahiensis, Tityus confluens, and Tityus martinpaechi, or in bivalent-like configuration in Rhopalurus rochai, Tityus bahiensis, Tityus confluens, Tityus fasciolatus, and Tityus paraguayensis. In the species examined, the 45S rDNA sites colocalized with constitutive heterochromatin regions. In light of the high chromosome variability and maintenance of number and terminal position of 45S rDNA sites in buthids, the heterochromatin may act to conserve the integrity of the ribosomal genes.


Assuntos
Cromossomos/genética , RNA Ribossômico/genética , Escorpiões/genética , Animais , Mapeamento Cromossômico , Meiose , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA