Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 186: 107842, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321361

RESUMO

Distinct hosts have been hypothesized to possess the potential for affecting species differentiation and genome evolution of parasitic organisms. However, what host shift history is experienced by the closely related parasites and whether disparate evolution of their genomes occur remain largely unknown. Here, we screened horizontal gene transfer (HGT) events in a pair of sister species of holoparasitic Boschniakia (Orobanchaceae) having obligate hosts from distinct families to recall the former host-parasite associations and performed a comparative analysis to investigate the difference of their organelle genomes. Except those from the current hosts (Ericaceae and Betulaceae), we identified a number of HGTs from Rosaceae supporting the occurrence of unexpected ancient host shifts. Different hosts transfer functional genes which changed nuclear genomes of this sister species. Likewise, different donors transferred sequences to their mitogenomes, which vary in size due to foreign and repetitive elements rather than other factors found in other parasites. The plastomes are both severely reduced, and the degree of difference in reduction syndrome reaches the intergeneric level. Our findings provide new insights into the genome evolution of parasites adapting to different hosts and extend the mechanism of host shift promoting species differentiation to parasitic plant lineages.


Assuntos
Genomas de Plastídeos , Orobanchaceae , Humanos , Filogenia , Orobanchaceae/genética , Genes de Plantas , Sequências Repetitivas de Ácido Nucleico , Transferência Genética Horizontal
2.
Planta ; 254(3): 61, 2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34455499

RESUMO

MAIN CONCLUSION: Extensive histology of host organs revealed the early events in the vegetative growth of Rafflesia consueloae including initial infection site, endophyte distribution, and other developmental events prior to bud emergence. The early events in the vegetative development of the holoparasite Rafflesia have long remained a mystery. Because its entire vegetative growth occurs within the host body, very little is known about the developmental events prior to emergence of the floral shoot. The goal of this study was to describe the events that occur during the vegetative growth of R. consueloae, particularly in the early stages of infection. We performed extensive microtome sectioning of multiple root and stem segments from different Tetrastigma host individuals to examine the cytology, distribution, and development of the R. consueloae endophyte within the host tissues. We found that R. consueloae infection is restricted to the roots of its host. Infection begins within the vascular cambium where the endophyte appears to initially reside prior to their radial spread to the vascular tissues. The tissues obtained from different host individuals had varying degrees of infection alluding to a possible role of host resistance mechanisms and/or varying levels of parasite infectiousness. Endophyte presence in host vines without external manifestations of infection indicates that the parasite may dwell within the host tissues for prolonged periods as small cell clusters without transitioning to the reproductive stage. Furthermore, we found that floral shoots may develop in scarcely infected host tissues indicating that extensive endophyte growth within the host is not a prerequisite to the onset of reproductive development. Overall, our study describes for the first time the developmental events prior to emergence of R. consueloae buds from its host.


Assuntos
Lepidópteros , Parasitos , Animais , Câmbio , Endófitos , Reprodução
3.
Proc Biol Sci ; 285(1887)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232155

RESUMO

Foundational studies of chloroplast genome (plastome) evolution in parasitic plants have focused on broad trends across large clades, particularly among the Orobanchaceae, a species-rich and ecologically diverse family of root parasites. However, the extent to which such patterns and processes of plastome evolution, such as stepwise gene loss following the complete loss of photosynthesis (shift to holoparasitism), are detectable at shallow evolutionary time scale is largely unknown. We used genome skimming to assemble eight chloroplast genomes representing complete taxonomic sampling of Aphyllon sect. Aphyllon, a small clade within the Orobanchaceae that evolved approximately 6 Ma, long after the origin of holoparasitism. We show substantial plastome reduction occurred in the stem lineage, but subsequent change in plastome size, gene content, and structure has been relatively minimal, albeit detectable. This lends additional fine-grained support to existing models of stepwise plastome reduction in holoparasitic plants. Additionally, we report phylogenetic evidence based on an rbcL gene tree and assembled 60+ kb fragments of the Aphyllon epigalium mitochondrial genome indicating host-to-parasite horizontal gene transfers (hpHGT) of several genes originating from the plastome of an ancient Galium host into the mitochondrial genome of a recent common ancestor of A. epigalium Ecologically, this evidence of hpHGT suggests that the host-parasite associations between Galium and A. epigalium have been stable at least since its subspecies diverged hundreds of thousands of years ago.


Assuntos
Galium/parasitologia , Transferência Genética Horizontal , Genoma de Cloroplastos/genética , Orobanchaceae/genética , Evolução Biológica , Galium/genética , Genes de Plantas , Genoma Mitocondrial , Filogenia , Seleção Genética
4.
J Exp Bot ; 72(8): 2818-2821, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33564888

Assuntos
Fabaceae , Flores , Mutação
5.
Ann Bot ; 114(2): 233-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24942001

RESUMO

BACKGROUND AND AIMS: Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis. METHODS: Serial sectioning and staining with non-specific dyes, periodic-Schiff's reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling. KEY RESULTS: A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host. CONCLUSIONS: Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite.


Assuntos
Endófitos/fisiologia , Flores/anatomia & histologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/microbiologia , Endófitos/citologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia
6.
Tree Physiol ; 43(11): 2001-2011, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37606243

RESUMO

Mediterranean-type ecosystems provide a unique opportunity to study parasitic plant-host interactions, such as the relationship between the dominant shrub Cistus albidus L. and the root holoparasitic plant Cytinus hypocistis L. We examined this interaction (i) locally, by measuring the hormonal profiling of the interaction zone between the holoparasitic plant and the host, and (ii) systemically, by examining the hormonal profiling and physiological status of leaves from infested and uninfested plants. Furthermore, we explored how temporal variation (seasonal effects) and geographical location influenced the systemic hormonal and physiological response of leaves. Results shed light on tissue-related variations in hormones, suggesting the parasite exerted a sink effect, mainly influenced by cytokinins. Jasmonates triggered a defense response in leaves, far from the infestation point, and both jasmonates and abscisic acid (ABA) appeared to be involved in the tolerance to holoparasitism when plants were simultaneously challenged with summer drought. Parasitism did not have any major negative impact on the host, as indicated by physiological stress markers in leaves, thus indicating a high tolerance of the shrub C. albidus to the root holoparasitic plant C. hypocistis. Rather, parasitism seemed to exert a priming-like effect and some compensatory effects were observed (increased chlorophyll contents) in the host under mild climatic conditions. We conclude that (i) cytokinins, jasmonates and ABA play a role at the local and systemic levels in the response of C. albidus to the biotic stress caused by C. hypocistis, and that (ii) seasonal changes in environmental conditions and geographical location may impact holoparasitic plant-host interactions in the field, modulating the physiological response.


Assuntos
Cistus , Cistus/fisiologia , Ecossistema , Ácido Abscísico , Antioxidantes , Citocininas , Folhas de Planta/fisiologia
7.
Front Plant Sci ; 8: 1380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861092

RESUMO

Orobanchaceae is the largest family among the parasitic angiosperms. It comprises non-parasites, hemi- and holoparasites, making this family an ideal test case for studying the evolution of parasitism. Previous phylogenetic analyses showed that holoparasitism had arisen at least three times from the hemiparasitic taxa in Orobanchaceae. Until now, however, not all known genera of Orobanchaceae were investigated in detail. Among them, the unknown phylogenetic positions of the holoparasites Gleadovia and Phacellanthus are the key to testing how many times holoparasitism evolved. Here, we provide clear evidence for the first time that they are members of the tribe Orobancheae, using sequence data from multiple loci (nuclear genes ITS, PHYA, PHYB, and plastid genes rps2, matK). Gleadovia is an independent lineage whereas Phacellanthus should be merged into genus Orobanche section Orobanche. Our results unambiguously support the hypothesis that there are only three origins of holoparasitism in Orobanchaceae. Divergence dating reveals for the first time that the three origins of holoparasitism were not synchronous. Our findings suggest that holoparasitism can persist in specific clades for a long time and holoparasitism may evolve independently as an adaptation to certain hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA