Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 163: 103076, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998271

RESUMO

Many important Pliocene hominin specimens have been recovered from Woranso-Mille, a paleontological research area in the Afar region of Ethiopia, including the complete cranium of Australopithecus anamensis, a partial skeleton of Australopithecus afarensis, mandibular and maxillary elements representing a new species, Australopithecus deyiremeda, and a partial foot of an as-yet-unnamed species. Woranso-Mille is the only site, so far, to have reported the co-existence of more than one early hominin species between 3.8 and 3.3 Ma and the temporal overlap between A. anamensis and A. afarensis. Thus, the site has important implications for our understanding of the paleoecology and taxonomic diversity of early hominins and their ecological niche. This paper explores the paleohabitats of Woranso-Mille through its faunal community ecological structure and taxonomic composition using correspondence analysis and Forbes modified similarity index. The results suggest that Pliocene Woranso-Mille was a mosaic of different habitat types, with riparian woodland and floodplain grassland along rivers draining into a lake, along with less mesic habitats such as woodland, grassland, and shrubland. The apparent high level of vegetation heterogeneity may have promoted dietary specializations and niche differentiation among the different Australopithecus species at Woranso-Mille and allowed for their co-existence at the site.


Assuntos
Fósseis , Hominidae , Animais , Evolução Biológica , Ecossistema , Etiópia , Paleontologia
2.
Proc Natl Acad Sci U S A ; 115(19): 4891-4896, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686074

RESUMO

The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined.


Assuntos
Evolução Biológica , Mudança Climática , Fósseis , Hominidae/classificação , Hominidae/fisiologia , Animais
3.
J Hum Evol ; 126: 91-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583846

RESUMO

The newly described partial skeleton of Paranthropus boisei KNM-ER 47000 as well as the FwJj14E Ileret footprints provide new evidence on the paleobiology and diversity of hominins from the Okote Member of the Koobi Fora Formation at East Turkana about 1.5 Ma. To better understand the ecological context of the Okote hominins, it is necessary to broaden the geographical focus of the analysis to include the entire Omo-Turkana ecosystem, and the temporal focus to encompass the early Pleistocene. Previous work has shown that important changes in the regional vegetation occurred after 2 Ma, and that there was a peak in mammalian turnover and diversity close to 1.8 Ma. This peak in diversity included the Hominini, with the species P. boisei, Homo habilis, Homo rudolfensis, and Homo erectus co-occurring at around 1.8 Ma. There is considerable debate about whether H. habilis and H. rudolfensis indeed constitute separate species, but even if we consider them both as H. habilis sensu lato, the co-occurrence of three hominin species at any one time and place is rather unusually high diversity for hominin standards (even if not so for other mammalian groups such as suids, bovids, or cercopithecids). Here we use mammalian faunal abundance data to place confidence intervals on first and last appearances of hominin species in the early Pleistocene of the Omo-Turkana Basin, and use these estimates to discuss hominin diversity in the Okote Member. We suggest that in the early Pleistocene a wide range of depositional environments and vegetation types, along with a high frequency of volcanism, likely maintained high levels of environmental variability both in time and space across the Omo-Turkana region, and provided ecological opportunities for the coexistence of at least three hominin species alongside a diverse mammalian fauna.


Assuntos
Biodiversidade , Evolução Biológica , Meio Ambiente , Hominidae , Animais , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Quênia , Paleontologia
4.
Proc Natl Acad Sci U S A ; 113(23): 6364-71, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27274043

RESUMO

Recent discoveries of multiple middle Pliocene hominins have raised the possibility that early hominins were as speciose as later hominins. However, debates continue to arise around the validity of most of these new taxa, largely based on poor preservation of holotype specimens, small sample size, or the lack of evidence for ecological diversity. A closer look at the currently available fossil evidence from Ethiopia, Kenya, and Chad indicate that Australopithecus afarensis was not the only hominin species during the middle Pliocene, and that there were other species clearly distinguishable from it by their locomotor adaptation and diet. Although there is no doubt that the presence of multiple species during the middle Pliocene opens new windows into our evolutionary past, it also complicates our understanding of early hominin taxonomy and phylogenetic relationships.


Assuntos
Evolução Biológica , Hominidae/classificação , Animais , Chade , Etiópia , Fósseis , Quênia , Filogenia
5.
J Hum Evol ; 100: 35-53, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27765148

RESUMO

Australopithecus afarensis is the best-known and most dimorphic species in the early hominin fossil record. Here, we present a comparative description of new fossil specimens of Au. afarensis from Nefuraytu, a 3.330-3.207 million-years-old fossil collection area in the Woranso-Mille study area, central Afar, Ethiopia. These specimens include NFR-VP-1/29, one of the most complete mandibles assigned to the species thus far and among the largest mandibles attributed to Au. afarensis, likely representing a male individual. NFR-VP-1/29 retains almost all of the distinctive archaic features documented for Au. afarensis. These features include a posteriorly sloping symphysis, a low and rounded basally set inferior transverse torus, anterosuperiorly opening mental foramen, a lateral corpus hollow bound anteriorly by the C/P3 jugae and posteriorly by the lateral prominence, and the ascending ramus arising high on the corpus. Dental morphology and metrics of the Nefuraytu specimens also falls within the range of Au. afarensis. The presence of this species at Woranso-Mille between 3.330 and 3.207 million years ago confirms the existence of this species in the area in close spatial and temporal proximity to other middle Pliocene hominin taxa such as the one represented by the Burtele foot (BRT-VP-2/73) and the recently named species Australopithecus deyiremeda. This has important implications for our understanding of middle Pliocene hominin diversity.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Mandíbula/anatomia & histologia , Dente/anatomia & histologia , Animais , Etiópia , Hominidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA