Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 146(4): 714-719, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26962179

RESUMO

BACKGROUND: Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine ß-synthase and cystathionine γ-lyase, with pyridoxal 5'-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. OBJECTIVE: To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. METHODS: Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. RESULTS: Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P < 0.66), with marked heterogeneity of individual responses. After restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R2 = 0.36; P = 0.002) and after (R2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in vitamin B-6 adequacy (R2 = 0.41; P < 0.001). CONCLUSIONS: The resiliency of plasma lanthionine and homolanthionine concentrations after short-term vitamin B-6 restriction suggests a minimal effect of moderate vitamin B-6 deficiency on hydrogen sulfide production. Additional research is needed to better understand the metabolism and disposal of these biomarkers in humans. This study was registered at clinicaltrials.gov as NCT00877812.

2.
Toxins (Basel) ; 9(1)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28075397

RESUMO

Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their ß-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-ß-synthase (CBS) or cystathionine-γ-lyase (CSE) independently, in the alternate reactions of the transsulfuration pathway devoted to hydrogen sulfide biosynthesis. Low plasma total hydrogen sulfide levels, probably due to reduced CSE expression, are present in uremia, while homolanthionine and lanthionine accumulate in blood, the latter several fold. Uremic patients display a derangement of sulfur amino acid metabolism with a high prevalence of hyperhomocysteinemia. Uremia is associated with a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity, due to the accumulation of retention products. Lanthionine inhibits hydrogen sulfide production in hepatoma cells, possibly through CBS inhibition, thus providing some basis for the biochemical mechanism, which may significantly contribute to alterations of metabolism sulfur compounds in these subjects (e.g., high homocysteine and low hydrogen sulfide). We therefore suggest that lanthionine is a novel uremic toxin.


Assuntos
Alanina/análogos & derivados , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Sulfetos/sangue , Uremia/metabolismo , Alanina/sangue , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Homocisteína/metabolismo , Humanos , Sulfeto de Hidrogênio/sangue , Diálise Renal , Uremia/sangue
3.
Biochimie ; 126: 97-107, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27129884

RESUMO

Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine ß-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed.


Assuntos
Alanina/análogos & derivados , Sulfeto de Hidrogênio/sangue , Diálise Renal , Sulfetos/sangue , Uremia/sangue , Uremia/terapia , Adulto , Idoso , Alanina/sangue , Feminino , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/terapia , Masculino , Pessoa de Meia-Idade
4.
Biochimie ; 126: 14-20, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26791043

RESUMO

Two enzymes in the transsulfuration pathway of homocysteine -cystathionine beta-synthase (CBS) and gamma-cystathionase (CTH)-use cysteine and/or homocysteine to produce the important signaling molecule hydrogen sulfide (H2S) and simultaneously the thioethers lanthionine, cystathionine or homolanthionine. In this study we explored whether impaired flux of substrates for H2S synthesis and/or deficient enzyme activities alter production of hydrogen sulfide in patients with homocystinurias. As an indirect measure of H2S synthesis we determined by LC-MS/MS concentrations of thioethers in plasma samples from 33 patients with different types of homocystinurias, in 8 patient derived fibroblast cell lines, and as reaction products of seven purified mutant CBS enzymes. Since chaperoned recombinant mutant CBS enzymes retained capacity of H2S synthesis in vitro it can be stipulated that deficient CBS activity in vivo may impair H2S production. Indeed, in patients with classical homocystinuria we observed significantly decreased cystathionine and lanthionine concentrations in plasma (46% and 74% of median control levels, respectively) and significantly lower cystathionine in fibroblasts (8% of median control concentrations) indicating that H2S production from cysteine and homocysteine may be also impaired. In contrast, the grossly elevated plasma levels of homolanthionine in CBS deficient patients (32-times elevation compared to median of controls) clearly demonstrates a simultaneous overproduction of H2S from homocysteine by CTH. In the remethylation defects the accumulation of homocysteine and the increased flux of metabolites through the transsulfuration pathway resulted in elevation of cystathionine and homolanthionine (857% and 400% of median control values, respectively) indicating a possibility of an increased biosynthesis of H2S by both CBS and CTH. This study shows clearly disturbed thioether concentrations in homocystinurias, and modeling using these data indicates that H2S synthesis may be increased in these conditions. Further studies are needed to confirm our findings and to explore the possible implications for pathophysiology of these disorders.


Assuntos
Alanina/análogos & derivados , Cistationina/metabolismo , Fibroblastos/metabolismo , Homocistinúria/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfetos/metabolismo , Alanina/metabolismo , Células Cultivadas , Cistationina beta-Sintase/metabolismo , Feminino , Fibroblastos/patologia , Homocistinúria/patologia , Humanos , Masculino
5.
Biochimie ; 126: 21-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26765812

RESUMO

The transsulfuration pathway (TS) acts in sulfur amino acid metabolism by contributing to the regulation of cellular homocysteine, cysteine production, and the generation of H2S for signaling functions. Regulation of TS pathway kinetics involves stimulation of cystathionine ß-synthase (CBS) by S-adenosylmethionine (SAM) and oxidants such as H2O2, and by Michaelis-Menten principles whereby substrate concentrations affect reaction rates. Although pyridoxal phosphate (PLP) serves as coenzyme for both CBS and cystathionine γ-lyase (CSE), CSE exhibits much greater loss of activity than CBS during PLP insufficiency. Thus, cellular and plasma cystathionine concentrations increase in vitamin B6 deficiency mainly due to the bottleneck caused by reduced CSE activity. Because of the increase in cystathionine, the canonical production of cysteine (homocysteine â†’ cystathionine â†’ cysteine) is largely maintained even during vitamin B6 deficiency. Typical whole body transsulfuration flux in humans is 3-7 µmol/h per kg body weight. The in vivo kinetics of H2S production via side reactions of CBS and CSE in humans are unknown but they have been reported for cultured HepG2 cells. In these studies, cells exhibit a pronounced reduction in H2S production capacity and rates of lanthionine and homolanthionine synthesis in deficiency. In humans, plasma concentrations of lanthionine and homolanthionine exhibit little or no mean change due to 4-wk vitamin B6 restriction, nor do they respond to pyridoxine supplementation of subjects in chronically low-vitamin B6 status. Wide individual variation in responses of the H2S biomarkers to such perturbations of human vitamin B6 status suggests that the resulting modulation of H2S production may have physiological consequences in a subset of people. Supported by NIH grant DK072398. This paper refers to data from studies registered at clinicaltrials.gov as NCT01128244 and NCT00877812.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Estado Nutricional , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Animais , Ensaios Clínicos como Assunto , Feminino , Células Hep G2 , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA