Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(9): 3291-302, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24573288

RESUMO

Segmental organization along the neuraxis is a prominent feature of the CNS in vertebrates. In a wide range of fishes, hindbrain segments contain orderly arranged reticulospinal neurons (RSNs). Individual RSNs in goldfish and zebrafish hindbrain are morphologically identified. RSNs sharing similar morphological features are called segmental homologs and repeated in adjacent segments. However, little is known about functional relationships among segmental homologs. Here we investigated the electrophysiological connectivity between the Mauthner cell (M-cell), a pair of giant RSNs in segment 4 (r4) that are known to trigger fast escape behavior, and different series of homologous RSNs in r4-r6. Paired intracellular recordings in adult goldfish revealed unidirectional connections from the M-cell to RSNs. The connectivity was similar in morphological homologs. A single M-cell spike produced IPSPs in dorsally located RSNs (MiD cells) on the ipsilateral side and excitatory postsynaptic depolarization on the contralateral side, except for MiD2cm cells. The inhibitory or excitatory potentials effectively suppressed or enhanced target RSNs spiking, respectively. In contrast to the lateralized effects on MiD cells, single M-cell spiking elicited equally strong depolarizations on bilateral RSNs located ventrally (MiV cells), and the depolarization was high enough for MiV cells to burst. Therefore, the morphological homology of repeated RSNs in r4-r6 and their functional M-cell connectivity were closely correlated, suggesting that each functional connection works as a functional motif during the M-cell-initiated escape.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Rombencéfalo/citologia , Animais , Estimulação Elétrica , Feminino , Lateralidade Funcional/fisiologia , Carpa Dourada , Masculino , Vias Neurais/fisiologia , Neurônios/classificação , Técnicas de Patch-Clamp , Medula Espinal/fisiologia , Estatísticas não Paramétricas
2.
Philos Trans R Soc Lond B Biol Sci ; 371(1685): 20150057, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26598733

RESUMO

Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Sistema Nervoso Central/fisiologia , Atividade Motora/genética , Atividade Motora/fisiologia , Periodicidade , Animais
3.
J Comp Neurol ; 524(6): 1181-92, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26355705

RESUMO

Phylogenetic comparisons of neurotransmitter distribution are important for understanding the ground plan organization of nervous systems. This study describes the γ-aminobutyric acid (GABA)-immunoreactive (GABA-ir) neurons in the buccal ganglia of six sea slug species (Mollusca, Gastropoda, Euthyneura, Nudipleura). In the nudibranch species, Hermissenda crassicornis, Tritonia diomedea, Tochuina tetraquetra, and Dendronotus iris, the number of GABA-ir neurons was highly consistent. Another nudibranch, Melibe leonina, however, contained approximately half the number of GABA-ir neurons. This may relate to its loss of a radula and its unique feeding behavior. The GABA immunoreactivity in a sister group to the nudibranchs, Pleurobranchaea californica, differed drastically from that of the nudibranchs. Not only did it have significantly more GABA-ir neurons but it also had a unique GABA distribution pattern. Furthermore, unlike the nudibranchs, the Pleurobranchaea GABA distribution was also different from that of other, more distantly related, euopisthobranch and panpulmonate snails and slugs. This suggests that the Pleurobranchaea GABA distribution may be a derived feature, unique to this lineage. The majority of GABA-ir axons and neuropil in the Nudipleura were restricted to the buccal ganglia, commissures, and connectives. However, in Tritonia and Pleurobranchaea, we detected a few GABA-ir fibers in buccal nerves that innervate feeding muscles. Although the specific functions of the GABA-ir neurons in the species in this study are not known, the innervation pattern suggests these neurons may play an integrative or regulatory role in bilaterally coordinated behaviors in the Nudipleura.


Assuntos
Encéfalo/citologia , Neurônios GABAérgicos/química , Gânglios dos Invertebrados/química , Gânglios dos Invertebrados/citologia , Neurônios/química , Ácido gama-Aminobutírico/análise , Animais , Química Encefálica , Mapeamento Encefálico/métodos , Moluscos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA