Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 174: 153-163, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30825738

RESUMO

Terrestrial ecosystems are exposed to various kinds of pollutants, including radionuclides. The honeybee, Apis mellifera, is commonly used in ecotoxicology as a model species for evaluating the effects of pollutants. In the present study, honeybees were irradiated right after birth for 14 days with gamma rays at dose rates ranging between 4.38 × 10-3 and 588 mGy/d. Biological tissues (head, intestine and abdomen) were sampled at D3, D10 and D14. Ten different physiological markers involved in nervous (acetylcholinesterase (AChE)), antioxidative (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)), immune system (phenoloxidase (PO)) and metabolism (carboxylesterases (CaEs) and alkaline phosphatase (ALP)) were measured. Univariate analyses were conducted to determine whether each individual biomarker response was positively or negatively correlated with the dose rate. Then, multivariate analyses were applied to investigate the relationships between all the biomarker responses. Although no mortality occurred during the experiment, several biomarkers varied significantly in relation to the dose rate. Globally, the biomarkers of antioxidant and immune systems decreased as the dose rate increased. Reversible effects on the indicator of the neural system were found. Concerning indicators of metabolism (carboxylesterases), variations occurred but no clear pattern was found. Taken altogether, these results help better understand the effects of ionizing radiation on bees by identifying relevant physiological markers of effects. These results could improve the assessment of the environmental risk due to ionizing radiation in terrestrial ecosystems.


Assuntos
Abelhas/efeitos da radiação , Raios gama , Poluentes Radioativos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Abelhas/metabolismo , Biomarcadores/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Catalase/metabolismo , Ecotoxicologia/métodos , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Análise Multivariada , Poluentes Radioativos/análise , Superóxido Dismutase/metabolismo
2.
Biol Open ; 13(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263864

RESUMO

Honeybees (Apis mellifera) are a keystone species for managed pollination and the production of hive products. Eusociality in honeybees leads to much of the reproduction in a hive driven by the queen. Queen bees have two large active ovaries that can produce large numbers of eggs if conditions are appropriate. These ovaries are also active throughout the long lives of these insects, up to 5 years in some cases. Recent studies have indicated that the germline precursors of the adult honeybee queen ovary are organized into 8-cell clusters, joined together by a polyfusome; a cytoplasmic bridge. To understand the origin of these clusters, and trace the development of the honeybee queen ovary, we examined the cell types and regionalization of the developing larval and pupal queen ovaries. We used established (nanos and castor), and novel (odd skipped) gene expression markers to determine regions of the developing ovary. Primordial germline cells develop in the honeybee embryo and are organized into ovary structures before the embryo hatches. The ovary is regionalized by larval stage 3 into terminal filaments and germaria. At this stage, clusters of germline cells in the germaria are joined by fusomes and are dividing synchronously. The origin of the 8-cell clusters in the adult germarium is therefore during larval stages. On emergence, the queen ovary has terminal filaments and germaria but has not yet developed any vitellaria, which are produced after the queen embarks on a nuptial flight. The lack of germaria, and the storing of germline progenitors as clusters, may be adaptions for queen bees to endure the metabolic demands of a nuptial flight, as well as rapidly lay large numbers of eggs to establish a hive.


Assuntos
Células Germinativas , Larva , Ovário , Animais , Abelhas/fisiologia , Ovário/citologia , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Genes (Basel) ; 15(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254978

RESUMO

In this study, we elucidate the contribution of repetitive DNA sequences to the establishment of social structures in honeybees (Apis mellifera). Despite recent advancements in understanding the molecular mechanisms underlying the formation of honeybee castes, primarily associated with Notch signaling, the comprehensive identification of specific genomic cis-regulatory sequences remains elusive. Our objective is to characterize the repetitive landscape within the genomes of two honeybee subspecies, namely A. m. mellifera and A. m. ligustica. An observed recent burst of repeats in A. m. mellifera highlights a notable distinction between the two subspecies. After that, we transitioned to identifying differentially expressed DNA elements that may function as cis-regulatory elements. Nevertheless, the expression of these sequences showed minimal disparity in the transcriptome during caste differentiation, a pivotal process in honeybee eusocial organization. Despite this, chromatin segmentation, facilitated by ATAC-seq, ChIP-seq, and RNA-seq data, revealed a distinct chromatin state associated with repeats. Lastly, an analysis of sequence divergence among elements indicates successive changes in repeat states, correlating with their respective time of origin. Collectively, these findings propose a potential role of repeats in acquiring novel regulatory functions.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Abelhas/genética , Animais , Cromatina/genética , Genômica , RNA-Seq , Transdução de Sinais
4.
Animals (Basel) ; 14(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38539949

RESUMO

Nowadays, old-generation pesticides are released into ecosystems alongside new formulations, giving rise to pharmacological interactions (additive, synergistic, and antagonistic effects). The aim of this study was to evaluate the impact that simultaneous exposure to DMT and FLU doses has on bee health. Groups of twenty honeybees were housed in cages to compose six macro-groups. One group consisted of experimental replicates treated orally with a toxic dose of deltamenthrin (DMT 21.6 mg/L); two other groups were subjected to the oral administration of two toxic doses of flupyradifurone (FLU 50 mg/L and FLU 100 mg/L); and two other groups were intoxicated with a combination of the two pesticides (DMT 21.6 + FLU 50 and DMT 21.6 + FLU 100). The consequences of the pesticides' interactions were highlighted by measuring and comparing data on survival, food consumption, and abnormal behavior. Generally speaking, antagonism between the two pesticides has been demonstrated. The bees were able to survive for up to three days at the lowest dosage of FLU (50 mg/L), with 46% of the subjects still alive; however, the maximum dose (100 mg/L) caused all treated animals to die as early as the second day. When DMT and FLU 50 were administered together, the group that received DMT alone had a lower survival rate. When comparing the survival rates produced by the DMT and FLU 50 combination to those of the group receiving FLU 50 alone, the same was clearly visible. While there was no statistically significant improvement observed when the survival indices of the DMT and FLU 100 combination were compared to those of the group intoxicated with DMT alone, an improvement in survival indices was observed when these were compared with the group intoxicated with FLU 100 alone.

5.
Animals (Basel) ; 14(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396576

RESUMO

Flupyradifurone (FLU) is a butenolide insecticide that has come onto the market relatively recently. It is used in agriculture to control aphids, psyllids, and whiteflies. Toxicity studies have decreed its low toxicity to honeybees. However, recent research has challenged these claims; oral exposure to the pesticide can lead to behavioral abnormalities and in the worst cases, lethal phenomena. Compounds with antioxidant activity, such as flavonoids and polyphenols, have been shown to protect against the toxic effects of pesticides. The aim of this research was to evaluate the possible protective effect of the bergamot polyphenolic fraction (BPF) against behavioral abnormalities and lethality induced by toxic doses of FLU orally administered to honeybees under laboratory conditions. Honeybees were assigned to experimental groups in which two toxic doses of FLU, 50 mg/L and 100 mg/L were administered. In other replicates, three doses (1, 2 and 5 mg/kg) of the bergamot polyphenolic fraction (BPF) were added to the above toxic doses. In the experimental groups intoxicated with FLU at the highest dose tested, all caged subjects (20 individuals) died within the second day of administration. The survival probability of the groups to which the BPF was added was compared to that of the groups to which only the toxic doses of FLU were administered. The mortality rate in the BPF groups was statistically lower (p < 0.05) than in the intoxicated groups; in addition, a lower percentage of individuals exhibited behavioral abnormalities. According to this research, the ingestion of the BPF attenuates the harmful effects of FLU. Further studies are needed before proposing BPF incorporation into the honeybees' diet, but there already seem to be beneficial effects associated with its intake.

6.
Animals (Basel) ; 13(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136801

RESUMO

Pesticide-induced poisoning phenomena are a serious problem for beekeeping and can cause large losses of honeybee populations due to acute and sub-acute poisoning. The reduced responsiveness of honeybees to the damage caused by pesticides used in agriculture can be traced back to a general qualitative and quantitative impoverishment of the nectar resources of terrestrial ecosystems. Malnutrition is associated with a decline in the functionality of the immune system and the systems that are delegated to the detoxification of the organism. This research aimed to verify whether bergamot polyphenolic extract (BPF) could have protective effects against poisoning by the pyrethroid pesticide deltamethrin. The studies were conducted with caged honeybees under controlled conditions. Sub-lethal doses of pesticides and related treatments for BPF were administered. At a dose of 21.6 mg/L, deltamethrin caused mortality in all treated subjects (20 caged honeybees) after one day of administration. The groups where BPF (1 mg/kg) was added to the toxic solution recorded the survival of honeybees by up to three days. Comparing the honeybees of the groups in which the BPF-deltamethrin association was added to the normal diet (sugar solution) with those in which deltamethrin alone was added to the normal diet, the BPF group had a statistically significant reduction in the honeybee mortality rate (p ≤ 0.05) and a greater consumption of food. Therefore, it can be argued that the inclusion of BPF and its constituent antioxidants in the honeybee diet reduces toxicity and oxidative stress caused by oral intake of deltamethrin. Furthermore, it can be argued that BPF administration could compensate for metabolic energy deficits often induced by the effects of malnutrition caused by environmental degradation and standard beekeeping practices.

7.
Front Vet Sci ; 10: 1129701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923051

RESUMO

Honeybees are major pollinators for our food crops, but at the same time they face many stressors all over the world. One of the major threats to honeybee health are bacterial diseases, the most severe of which is the American Foulbrood (AFB). Recently a trans-generational vaccination approach against AFB has been proposed, showing strong potential in protecting the colonies from AFB outbreaks. Yet, what remains unstudied is whether the priming of the colony has any undesired side-effects. It is widely accepted that immune function is often a trade-off against other life-history traits, hence immune priming could have an effect on the colony performance. In this experiment we set up 48 hives, half of them with primed queens and half of them as controls. The hives were placed in six apiaries, located as pair of apiaries in three regions. Through a 2-year study we monitored the hives and measured their health and performance. We measured hive weight and frame contents such as brood amount, worker numbers, and honey yield. We studied the prevalence of the most common honeybee pathogens in the hives and expression of relevant immune genes in the offspring at larval stage. No effect of trans-generational immune priming on any of the hive parameters was found. Instead, we did find other factors contributing on various hive performance parameters. Interestingly not only time but also the region, although only 10 km apart from each other, had an effect on the performance and health of the colonies, suggesting that the local environment plays an important role in hive performance. Our results suggest that exploiting the trans-generational priming could serve as a safe tool in fighting the AFB in apiaries.

8.
Animals (Basel) ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38200800

RESUMO

Varroa destructor is currently considered the parasite that causes the greatest damage and economic losses to honeybee farms. Its presence is often associated with that of viral and bacterial pathogens, which ultimately leads to colony collapse. Careful control of the parasitic load is therefore necessary to avoid the onset of these events. Although chemical treatments are often in easily and quickly administered formulations, in recent years, there have been increasingly frequent reports of the onset of drug resistance phenomena, which must lead to reconsidering their use. Furthermore, chemical compounds can easily accumulate in the food matrices of the hive, with possible risks for the final consumer. In such a condition, it is imperative to find alternative treatment solutions. Essential oils (EOs) prove to be promising candidates due to their good efficacy and good environmental biodegradability. In this study, the acaricidal efficacy of the EOs of Calamintha sylvatica Bromf., Calamintha nepeta Savi, Lavandula austroapennina N.G. Passal. Tundis & Upson and Mentha piperita L., extracted from botanical species belonging to the Lamiaceae family, was evaluated. The test chosen for the evaluation was residual toxicity by contact. The examined EOs were diluted in Acetone to a concentration of 2, 1 and 0.5 mg/mL. At the highest concentration, the EOs demonstrated an acaricidal activity equal to 52% for C. nepeta, 60% for C. sylvatica, 80% for L. austroapennina and 68% for M. piperita. Of the EOs tested, therefore, Lavender proves to be a good candidate for subsequent evaluations in semi-field and field studies.

9.
Vet Sci ; 10(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133253

RESUMO

The most significant ectoparasitic mite of honeybees, Varroa destructor, has a detrimental effect on bee health and honey output. The principal strategy used by the control programs is the application of synthetic acaricides. All of this has resulted in drug resistance, which is now a major worry for beekeeping. As a result, research on alternate products and techniques for mite management is now required. The aim of this study was to determine whether essential oils (EOs) extracted from botanical species of Lamiacae, typical of the Calabria region of Southern Italy, could reduce the population of the mite V. destructor. Among the best-known genera of the Lamiaceae family are oregano, rosemary and thyme, whose EOs were employed in this study. By steam distillation, the EOs were extracted from Origanum vulgare subsp. viridulum (Martrin-Donos) Nyman, Thymus capitatus Hoffmanns. and Link, Thymus longicaulis C.Presl and Salvia rosmarinus Schleid. plant species harvested directly on the Calabrian territory in their balsamic time. Each EO went to the test in vitro (contact toxicity) against V. destructor. Fifty adult female mites, five for each EO and the positive and negative control, were used in each experimental replicate. The positive controls comprised five individuals treated to Amitraz dilute in acetone, and the negative controls included five individuals exposed to acetone alone. To create the working solution to be tested (50 µL/tube), the EOs were diluted (0.5 mg/mL, 1 mg/mL, 2 mg/mL and 4 mg/mL) in HPLC-grade acetone. After 1 h of exposure, mite mortality was manually assessed. Origanum vulgare subsp. viridulum, Thymus capitatus and Thymus longicaulis were the EOs with the highest levels of efficiency at 2 mg/mL, neutralizing (dead + inactivated), 94%, 92% and 94% of parasites, respectively. Salvia rosmarinus EO gave a lower efficacy, resulting in a percentage of 38%. Interestingly, no adverse effects were highlighted in toxicity tests on honeybees. These results show that these OEs of the Lamiaceae family have antiparasitic action on V. destructor. Therefore, they could be used, individually or combined, to exploit the synergistic effect for a more sustainable control of this parasite mite in honeybee farms.

10.
Animals (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36290135

RESUMO

Egypt has an ongoing long history with beekeeping, which started with the ancient Egyptians making various reliefs and inscriptions of beekeeping on their tombs and temples. The Egyptian honeybee (Apis mellifera lamarckii) is an authentic Egyptian honeybee subspecies utilized in apiculture. A. m. lamarckii is a distinct honeybee subspecies that has a particular body color, size, and high levels of hygienic behavior. Additionally, it has distinctive characteristics; including the presence of the half-queens, an excessive number of swarm cells, high adaptability to climatic conditions, good resistance to specific bee diseases, including the Varro disorder, and continuous breeding during the whole year despite low productivity, using very little propolis, and tending to abscond readily. This review discusses the history of beekeeping in Egypt and its current situation in addition to its morphology, genetic analysis, and distinctive characters, and the defensive behaviors of native A. m. lamarckii subspecies.

11.
Front Insect Sci ; 2: 844957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468782

RESUMO

Understanding the cause of honey bee (Apis mellifera) population decline has attracted immense attention worldwide in recent years. Exposure to neonicotinoid pesticides is considered one of the most probable factors due to the physiological and behavioral damage they cause to honey bees. However, the influence of thiacloprid, a relatively less toxic cyanogen-substituted form of neonicotinoid, on honey bee (Apis mellifera L.) development is not well studied. The toxicity of sublethal thiacloprid to larvae, pupae, and emerging honey bees was assessed under laboratory conditions. We found that thiacloprid reduced the survival rate of larvae and pupae, and delayed the development of bees which led to lower bodyweight and size. Furthermore, we identified differentially expressed genes involved in metabolism and immunity though RNA-sequencing of newly-emerged adult bees. GO enrichment analysis identified genes involved in metabolism, catalytic activity, and transporter activity. KEGG pathway analysis indicated that thiacloprid induced up-regulation of genes related to glutathione metabolism and Toll-like receptor signaling pathway. Overall, our results suggest that chronic sublethal thiacloprid can affect honey bee colonies by reducing survival and delaying bee development.

12.
J Insect Physiol ; 141: 104416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35780906

RESUMO

Division of labor is central to the ecological success of social insects. Among honeybees foragers, specialization for collecting nectar or pollen correlates with their sensitivity to gustatory stimuli (e.g. sugars). We hypothesize that pollen and nectar foragers also differ in their sensitivity to odors, and therefore in their likelihood to show odor-mediated responses. To assess foragers sensitivity to natural odors, we quantified the conditioning of the proboscis extension reflex (PER) to increasing concentrations (0.001; 0.01; 0.1; 1 M) of linalool or nonanal. Furthermore, we compared electroantennogram (EAG) recordings to correlate bees' conditioned responses with the electrophysiological responses of their antennae. To further explore differences of the antennal response of foragers in relation to task-related odors, we registered EAG signals for two behaviorally ''meaningful'' odors that mediate pollen collection: fresh pollen odors and the brood pheromone (E)-ß-ocimene. Pollen foragers performed better than nectar foragers in PER conditioning trials when linalool and nonanal were presented at low concentrations (0.001, 0.01 M). Consistently, their antennae showed stronger EAG signals (higher amplitudes) to these odors, suggesting that differences in sensitivity can be explained at the periphery of the olfactory system. Pollen and nectar foragers detect pollen odors differently, but not (E)-ß-ocimene. Pollen volatiles evoked EAG signals with hyper and depolarization components. In pollen foragers, the contribution of the hyperpolarization component was higher than in nectar foragers. We discuss our findings in terms of adaptive advantages to learn subtle olfactory cues that influence the ability to better identify/discriminate food sources.


Assuntos
Odorantes , Néctar de Plantas , Animais , Abelhas , Feromônios , Pólen , Olfato
13.
Plants (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371575

RESUMO

Pollination is limiting for avocado production. We examined whether adding bumblebees (BBs; ca. 10 hives/ha) to conventional honeybees (HB; 5 hives/ha) would improve 'Hass' avocado pollination and yields. A preliminary trial (2017/18) in an avocado orchard with four consecutive rows of 'Hass' followed by one row of 'Ettinger' serving as a pollenizer (20% 'Ettinger') showed a considerable increase in 'Hass' yield in rows adjacent to (up to 80 m from) the BB hives vs. distant rows (=controls). In 2018/19, the trials were extended to three additional orchards. A significant yield increase was obtained in the BB hive-adjacent trees compared to BB hive-distant ones. Similar results were obtained in 2019/20, in experiments conducted throughout the country. The SNP analysis, to determine the parents of 'Hass' fruit at varying distances from the BB hives, showed no differences in the cross-pollination rate ('Hass' × 'Ettinger'). However, pollination rates and the number of germinating pollen grains per stigma decreased with distance from the hives, and correlated to the negative gradient in yield. Taken together, our data suggest that adding BB hives to 'Hass' avocado orchards, at ca. 10 hives/ha resulting in 0.5-1.0 BB visits/tree per min, increases pollination and, accordingly, total yield.

14.
Insect Biochem Mol Biol ; 139: 103674, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34737063

RESUMO

Deformed wing virus (DWV) infection is believed to be closely associated with colony losses of honeybee (Apis mellifera) due to reduced learning and memory of infected bees. The adenosine (Ado) pathway is important for maintaining immunity and memory function in animals, and it enhances antivirus responses by regulating carbohydrate metabolism in insects. Nevertheless, its effect on the memory of invertebrates is not yet clear. This study investigated how the Ado pathway regulates energy metabolism and memory in honeybees following DWV infection. Decreased Ado receptor (Ado-R) expression in the brain of infected bees resulted in a carbohydrate imbalance as well as impairments of glutamate-glutamine (Glu-Gln) cycle and long-term memory. Dietary supplementation with Ado not only increased the brain energy metabolism but also rescued long-term memory loss by upregulating the expression of memory-related genes. The present study demonstrated the regulation of the Ado pathway upon DWV infection and provides insights into the mechanisms underlying energy regulation and the neurological function of honeybees.


Assuntos
Adenosina/metabolismo , Abelhas/virologia , Vírus de RNA/fisiologia , Transdução de Sinais , Animais , Metabolismo Energético , Memória
15.
Front Behav Neurosci ; 15: 690571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354573

RESUMO

Navigating animals combine multiple perceptual faculties, learn during exploration, retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression of their current needs and motivations. Navigation in insects has been linked to a variety of underlying strategies such as path integration, view familiarity, visual beaconing, and goal-directed orientation with respect to previously learned ground structures. Most works, however, study navigation either from a field perspective, analyzing purely behavioral observations, or combine computational models with neurophysiological evidence obtained from lab experiments. The honey bee (Apis mellifera) has long been a popular model in the search for neural correlates of complex behaviors and exhibits extraordinary navigational capabilities. However, the neural basis for bee navigation has not yet been explored under natural conditions. Here, we propose a novel methodology to record from the brain of a copter-mounted honey bee. This way, the animal experiences natural multimodal sensory inputs in a natural environment that is familiar to her. We have developed a miniaturized electrophysiology recording system which is able to record spikes in the presence of time-varying electric noise from the copter's motors and rotors, and devised an experimental procedure to record from mushroom body extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined with a reconstruction of the animal's visual perception and find that the neural activity of MBENs is linked to sharp turns, possibly related to the relative motion of visual features. This method is a significant technological step toward recording brain activity of navigating honey bees under natural conditions. By providing all system specifications in an online repository, we hope to close a methodological gap and stimulate further research informing future computational models of insect navigation.

16.
J Pest Sci (2004) ; 93(1): 391-402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31997983

RESUMO

The parasitic small hive beetle (Aethina tumida) feeds on pollen, honey and brood of the European honey bee (Apis mellifera); establishment in North America and Australia has resulted in severe economic damage to the apiculture industry. We report potential for the "in-hive" use of a novel biopesticide that is toxic to this invasive beetle pest but harmless to honeybees. Constructs encoding the spider venom neurotoxin ω-hexatoxin-Hv1a (Hv1a) linked to the N- or C-terminus of snowdrop lectin (GNA) were used to produce recombinant Hv1a/GNA and GNA/Hv1a fusion proteins. Both were similarly toxic to beetles by injection (respective LD50s 1.5 and 0.9 nmoles/g larvae), whereas no effects on adult honeybee survival were observed at injection doses of > 200 nmoles/g insect. When fed to A. tumida larvae, GNA/Hv1a was significantly more effective than Hv1a/GNA (LC50s of 0.52 and 1.14 mg/ml diet, respectively), whereas both proteins were similarly toxic to adults. Results suggested that the reduced efficacy of Hv1a/GNA against larvae was attributable to differences in the susceptibility of the fusion proteins to cleavage by gut serine proteases. In laboratory assays, A. tumida larval survival was significantly reduced when brood, inoculated with eggs, was treated with GNA/Hv1a.

17.
Insects ; 9(1)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534004

RESUMO

Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid Chromatography-Mass Spectrometry) assay, we show that the cyanogenic glucosides linamarin and lotaustralin are present in the leaves, sepals, petals, anthers, and nectar of T. repens. Cyanogenic glucosides are generally thought to be defense compounds, releasing toxic hydrogen cyanide upon degradation. However, increasing evidence indicates that plant secondary metabolites found in nectar may protect pollinators from disease or predators. In a laboratory survival study with chronic feeding of secondary metabolites, we show that honeybees can ingest the cyanogenic glucosides linamarin and amygdalin at naturally occurring concentrations with no ill effects, even though they have enzyme activity towards degradation of cyanogenic glucosides. This suggests that honeybees can ingest and tolerate cyanogenic glucosides from flower nectar. Honeybees retain only a portion of ingested cyanogenic glucosides. Whether they detoxify the rest using rhodanese or deposit them in the hive should be the focus of further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA