Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.259
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
2.
Cell ; 186(1): 47-62.e16, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608657

RESUMO

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.


Assuntos
Ecossistema , Genoma Bacteriano , Genoma Bacteriano/genética , Filogenia , Oceanos e Mares , Genômica
3.
Cell ; 185(26): 4921-4936.e15, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563663

RESUMO

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.


Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Humanos , Lactente , Gravidez , Microbioma Gastrointestinal/genética , Microbiota/genética , Mães , Aleitamento Materno , Fezes , Sequências Repetitivas Dispersas
4.
Cell ; 185(17): 3248-3262.e20, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985290

RESUMO

Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.


Assuntos
Bacteriófagos , Ilhas Genômicas , Bactérias/genética , Bacteriófagos/genética , Transferência Genética Horizontal , Sistema Imunitário , Plasmídeos
5.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770502

RESUMO

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Assuntos
Hemípteros/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Toxinas Biológicas/metabolismo , Animais , Transferência Genética Horizontal , Genes de Plantas , Glucosídeos/química , Glucosídeos/metabolismo , Hemípteros/fisiologia , Herbivoria , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Solanum lycopersicum/metabolismo , Malonil Coenzima A/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Toxinas Biológicas/química
6.
Cell ; 184(8): 2053-2067.e18, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794144

RESUMO

Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal , Transferência Genética Horizontal , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Fezes/microbiologia , Genoma Bacteriano , Humanos , Filogenia , População Rural , Análise de Sequência de DNA , População Urbana , Sequenciamento Completo do Genoma
7.
Cell ; 178(6): 1452-1464.e13, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474367

RESUMO

Phages express anti-CRISPR (Acr) proteins to inhibit CRISPR-Cas systems that would otherwise destroy their genomes. Most acr genes are located adjacent to anti-CRISPR-associated (aca) genes, which encode proteins with a helix-turn-helix DNA-binding motif. The conservation of aca genes has served as a signpost for the identification of acr genes, but the function of the proteins encoded by these genes has not been investigated. Here we reveal that an acr-associated promoter drives high levels of acr transcription immediately after phage DNA injection and that Aca proteins subsequently repress this transcription. Without Aca activity, this strong transcription is lethal to a phage. Our results demonstrate how sufficient levels of Acr proteins accumulate early in the infection process to inhibit existing CRISPR-Cas complexes in the host cell. They also imply that the conserved role of Aca proteins is to mitigate the deleterious effects of strong constitutive transcription from acr promoters.


Assuntos
Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Virais/genética , Proteínas Associadas a CRISPR/genética , Escherichia coli/virologia , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/virologia , Fatores de Transcrição/genética , Transcrição Gênica
8.
Cell ; 179(7): 1499-1511.e10, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835029

RESUMO

Natural transformation (NT) is a major mechanism of horizontal gene transfer in microbial species that promotes the spread of antibiotic-resistance determinants and virulence factors. Here, we develop a cell biological approach to characterize the spatiotemporal dynamics of homologous recombination during NT in Vibrio cholerae. Our results directly demonstrate (1) that transforming DNA efficiently integrates into the genome as single-stranded DNA, (2) that the resulting heteroduplexes are resolved by chromosome replication and segregation, and (3) that integrated DNA is rapidly expressed prior to cell division. We show that the combination of these properties results in the nongenetic transfer of gene products within transformed populations, which can support phenotypic inheritance of antibiotic resistance in both V. cholerae and Streptococcus pneumoniae. Thus, beyond the genetic acquisition of novel DNA sequences, NT can also promote the nongenetic inheritance of traits during this conserved mechanism of horizontal gene transfer.


Assuntos
Transferência Genética Horizontal , Recombinação Homóloga , Streptococcus pneumoniae/genética , Transformação Genética , Vibrio cholerae/genética , Replicação do DNA , Farmacorresistência Bacteriana/genética
9.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730849

RESUMO

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Estreptófitas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Família Multigênica , Filogenia , Proteínas de Plantas/química , Domínios Proteicos , Estreptófitas/classificação , Simbiose/genética , Sintenia/genética
10.
Cell ; 178(4): 820-834.e14, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398339

RESUMO

Delineating ecologically meaningful populations among microbes is important for identifying their roles in environmental and host-associated microbiomes. Here, we introduce a metric of recent gene flow, which when applied to co-existing microbes, identifies congruent genetic and ecological units separated by strong gene flow discontinuities from their next of kin. We then develop a pipeline to identify genome regions within these units that show differential adaptation and allow mapping of populations onto environmental variables or host associations. Using this reverse ecology approach, we show that the human commensal bacterium Ruminococcus gnavus breaks up into sharply delineated populations that show different associations with health and disease. Defining populations by recent gene flow in this way will facilitate the analysis of bacterial and archaeal genomes using ecological and evolutionary theory developed for plants and animals, thus allowing for testing unifying principles across all biology.


Assuntos
Clostridiales/genética , Fluxo Gênico , Microbiota/genética , Adaptação Fisiológica/genética , Alelos , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Modelos Genéticos , Taxa de Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Prochlorococcus/genética , Sulfolobus/genética , Vibrio/genética
11.
Cell ; 176(6): 1356-1366.e10, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799038

RESUMO

Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.


Assuntos
Eucariotos/genética , Transferência Genética Horizontal/genética , Óperon/genética , Bactérias/genética , Escherichia coli/genética , Células Eucarióticas , Evolução Molecular , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genoma Fúngico/genética , Saccharomycetales/genética , Sideróforos/genética
12.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415838

RESUMO

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/classificação , Saccharomycetales/genética
13.
Cell ; 172(6): 1216-1227, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522743

RESUMO

The composite members of the microbiota face a range of selective pressures and must adapt to persist in the host. We highlight recent work characterizing the evolution and transfer of genetic information across nested scales of host-associated microbiota, which enable resilience to biotic and abiotic perturbations. At the strain level, we consider the preservation and diversification of adaptive information in progeny lineages. At the community level, we consider genetic exchange between distinct microbes in the ecosystem. Finally, we frame microbiomes as open systems subject to acquisition of novel information from foreign ecosystems through invasion by outsider microbes.


Assuntos
Evolução Molecular , Variação Genética , Metagenoma/genética , Microbiota/genética , Animais , Ecossistema , Transferência Genética Horizontal , Especificidade de Hospedeiro , Humanos
14.
Mol Cell ; 84(5): 883-896.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38309275

RESUMO

DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.


Assuntos
DNA , Endonucleases , DNA/metabolismo , Plasmídeos/genética , Células Procarióticas , Proteínas de Ciclo Celular/metabolismo
15.
Mol Cell ; 82(24): 4727-4740.e6, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525956

RESUMO

Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.


Assuntos
Adenosina Trifosfatases , Clivagem do DNA , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Plasmídeos/genética , Cromossomos/metabolismo , DNA/genética , Proteínas de Ciclo Celular/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo
16.
Annu Rev Microbiol ; 77: 45-66, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944262

RESUMO

Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/genética , Proteínas de Membrana Transportadoras , Duplicação Gênica , Fenótipo
17.
Trends Genet ; 40(3): 209-210, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310066

RESUMO

In the ocean, free-living bacteria exist in a dilute world where direct physical interactions between cells are relatively rare. How then do they exchange genetic information via horizontal gene transfer (HGT)? Lücking et al. have explored the world of marine 'protected extracellular DNA' (peDNA), and find that extracellular vesicles (EVs) are likely to play an important role.


Assuntos
DNA , Vesículas Extracelulares , DNA/genética , Bactérias/genética , Vesículas Extracelulares/genética , Transferência Genética Horizontal/genética , Oceanos e Mares
18.
Trends Genet ; 40(7): 555-557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688811

RESUMO

Bacteriophages and plasmids drive horizontal gene transfer (HGT) in bacteria. Phage-plasmids (P-Ps) are hybrids of plasmid and phages. Pfeifer and Rocha recently demonstrated that P-Ps can serve as intermediates in gene exchanges between these two types of elements, identified categories of preferentially transferred genes, and reconstructed gene flows involving phage P1-like P-Ps.


Assuntos
Bacteriófagos , Transferência Genética Horizontal , Plasmídeos , Transferência Genética Horizontal/genética , Plasmídeos/genética , Bacteriófagos/genética , Bactérias/genética , Bactérias/virologia
19.
EMBO J ; 42(24): e114835, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953666

RESUMO

Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.


Assuntos
Nematoides , Resiliência Psicológica , Animais , Caenorhabditis elegans/metabolismo , Filogenia , Transferência Genética Horizontal , Ramnose/metabolismo , Bactérias/genética
20.
Annu Rev Genet ; 53: 195-215, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31424971

RESUMO

Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host-parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host-parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.


Assuntos
Genoma de Planta , Interações Hospedeiro-Parasita/genética , Melhoramento Vegetal/métodos , Plantas/parasitologia , Evolução Biológica , Variação Biológica da População , Quimera , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/fisiologia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA