Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(19): e2121244119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512102

RESUMO

Sepsis, septic shock, and their sequelae are the leading causes of death in intensive care units, with limited therapeutic options. Disease resistance and tolerance are two evolutionarily conserved yet distinct defense strategies that protect the host against microbial infection. Here, we report that taurolidine administered at 6 h before septic challenge led to strong protection against polymicrobial sepsis by promoting both host resistance and disease tolerance characterized by accelerated bacterial clearance, ameliorated organ damage, and diminished vascular and gut permeability. Notably, taurolidine administered at 6 h after septic challenge also rescued mice from sepsis-associated lethality by enhancing disease tolerance to tissue and organ injury. Importantly, this in vivo protection afforded by taurolidine depends on an intact autophagy pathway, as taurolidine protected wild-type mice but was unable to rescue autophagy-deficient mice from microbial sepsis. In vitro, taurolidine induced light chain 3-associated phagocytosis in innate phagocytes and autophagy in vascular endothelium and gut epithelium, resulting in augmented bactericidal activity and enhanced cellular tolerance to endotoxin-induced damage in these cells. These results illustrate that taurolidine-induced autophagy augments both host resistance and disease tolerance to bacterial infection, thereby conferring protection against microbial sepsis.


Assuntos
Sepse , Tiadiazinas , Animais , Autofagia , Camundongos , Fagocitose , Sepse/tratamento farmacológico , Sepse/metabolismo , Taurina/análogos & derivados , Tiadiazinas/farmacologia
2.
Plant J ; 115(1): 108-126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36987839

RESUMO

Lactuca saligna L. is a wild relative of cultivated lettuce (Lactuca sativa L.), with which it is partially interfertile. Hybrid progeny suffer from hybrid incompatibility (HI), resulting in reduced fertility and distorted transmission ratios. Lactuca saligna displays broad-spectrum resistance against lettuce downy mildew caused by Bremia lactucae Regel and is considered a non-host species. This phenomenon of resistance in L. saligna is called non-host resistance (NHR). One possible mechanism behind this NHR is through the plant-pathogen interaction triggered by pathogen recognition receptors, including nucleotide-binding leucine-rich repeat (NLR) proteins and receptor-like kinases (RLKs). We report a chromosome-level genome assembly of L. saligna (accession CGN05327), leading to the identification of two large paracentric inversions (>50 Mb) between L. saligna and L. sativa. Genome-wide searches delineated the major resistance clusters as regions enriched in NLRs and RLKs. Three of the enriched regions co-locate with previously identified NHR intervals. RNA-seq analysis of Bremia-infected lettuce identified several differentially expressed RLKs in NHR regions. Three tandem wall-associated kinase-encoding genes (WAKs) in the NHR8 interval display particularly high expression changes at an early stage of infection. We propose RLKs as strong candidates for determinants of the NHR phenotype of L. saligna.


Assuntos
Lactuca , Oomicetos , Lactuca/genética , Genoma , Fenótipo , Doenças das Plantas/genética
3.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37399035

RESUMO

Phage therapy is a promising method for the treatment of multidrug-resistant bacterial infections. However, its long-term efficacy depends on understanding the evolutionary effects of the treatment. Current knowledge of such evolutionary effects is lacking, even in well-studied systems. We used the bacterium Escherichia coli C and its bacteriophage ΦX174, which infects cells using host lipopolysaccharide (LPS) molecules. We first generated 31 bacterial mutants resistant to ΦX174 infection. Based on the genes disrupted by these mutations, we predicted that these E. coli C mutants collectively produce eight unique LPS structures. We then developed a series of evolution experiments to select for ΦX174 mutants capable of infecting the resistant strains. During phage adaptation, we distinguished two types of phage resistance: one that was easily overcome by ΦX174 with few mutational steps ("easy" resistance) and one that was more difficult to overcome ("hard" resistance). We found that increasing the diversity of the host and phage populations could accelerate the adaptation of phage ΦX174 to overcome the hard resistance phenotype. From these experiments, we isolated 16 ΦX174 mutants that, together, can infect all 31 initially resistant E. coli C mutants. Upon determining the infectivity profiles of these 16 evolved phages, we uncovered 14 distinct profiles. Given that only eight profiles are anticipated if the LPS predictions are correct, our findings highlight that the current understanding of LPS biology is insufficient to accurately forecast the evolutionary outcomes of bacterial populations infected by phage.


Assuntos
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Lipopolissacarídeos/farmacologia , Bacteriófagos/genética , Mutação , Fenótipo
4.
BMC Plant Biol ; 24(1): 736, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095719

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS: Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS: In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Estômatos de Plantas , Triticum , Ascomicetos/fisiologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Locos de Características Quantitativas , Interações Hospedeiro-Patógeno
5.
J Anim Ecol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773788

RESUMO

Testing for intraspecific variation for host tolerance or resistance in wild populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test the importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden and survival for 8 weeks. We used a multi-state modelling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are more tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also appeared more resistant to Bd with a higher probability of infection clearance and an average of 5 days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that likely contribute to why population declines vary regionally across this species. Our multi-state framework allowed us to gain inference on typically hidden disease processes when testing for host tolerance or resistance. Our findings demonstrate that describing an entire host species as 'tolerant' or 'resistant' (or lack thereof) is unwise without testing for intraspecific variation.

6.
Phytopathology ; 114(7): 1577-1586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669176

RESUMO

Little is known about the selection pressures acting on plant pathogen populations, especially those applied by quantitative forms of resistance. Fusarium graminearum causes Fusarium head blight in wheat, producing significant yield losses and mycotoxin contamination. Quantitative host resistance is the best method to control Fusarium head blight. However, there needs to be more understanding of how disease resistance affects the evolution of plant pathogens. The aim of this study was to determine if the presence or absence of wheat resistance influenced the fitness components and genomic regions of F. graminearum. Thirty-one isolates from highly susceptible and 25 isolates from moderately resistant wheat lines were used. Isolate aggressiveness was measured by the area under the disease progress curve, visually damaged kernels, and deoxynivalenol contamination. The in vitro growth rate and spore production were also measured. Two whole-genome scans for selection were conducted with 333,297 single-nucleotide polymorphisms. One scan looked for signatures of selection in the entire sample, and the other scan was for divergent selection between the isolates from moderately resistant wheat and highly susceptible wheat. The subsample of isolates from highly susceptible wheat was primarily aggressive. Several regions of the F. graminearum genome with signatures for selection were identified. The moderately resistant wheat varieties used in this study did not select more aggressive isolates, suggesting that quantitative resistance is a durable method to control Fusarium head blight.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Fusarium/fisiologia , Fusarium/genética , Fusarium/patogenicidade , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Tricotecenos/metabolismo , Polimorfismo de Nucleotídeo Único/genética
7.
Phytopathology ; : PHYTO11230436R, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38772042

RESUMO

The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR toward P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan, and three mutants derived from fast neutron irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level but also defense pathways unique to each cultivar, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible fast neutron mutants lacked enrichment of three terpenoid-related pathways and two cell wall-related pathways at either one or both time points, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important Kyoto Encyclopedia of Genes and Genomes pathways at either one or both time points, including sesquiterpenoid and triterpenoid biosynthesis; thiamine metabolism; arachidonic acid; stilbenoid, diarylheptanoid, and gingerol biosynthesis; and monobactam biosynthesis. Additionally, 31 genes that were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins; valine, leucine, and isoleucine biosynthesis; and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and further our understanding of the complex network associated with QDR mechanisms in soybean toward P. sojae.

8.
Phytopathology ; 114(5): 1039-1049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514043

RESUMO

Aerial blight, caused by the fungus Rhizoctonia solani anastomosis group (AG) 1-IA, is an economically important soybean disease in the mid-Southern United States. Management has relied on fungicide applications during the season, but there is an increasing prevalence of resistance to commonly used strobilurin fungicides and an urgent need to identify soybean varieties resistant to aerial blight. Because the patchy distribution of the pathogen complicates field variety screening, the present study aimed to develop a greenhouse screening protocol to identify soybean varieties resistant to aerial blight. For this, 88 pathogen isolates were collected from commercial fields and research farms across five Louisiana parishes, and 77% were confirmed to be R. solani AG1-IA. Three polymorphic codominant microsatellite markers were used to explore the genetic diversity of 43 R. solani AG1-IA isolates, which showed high genetic diversity, with 35 haplotypes in total and only two haplotypes common to two other locations. Six genetically diverse isolates were chosen and characterized for their virulence and fungicide sensitivity. The isolate AC2 was identified as the most virulent and was resistant to both active ingredients, azoxystrobin and pyraclostrobin, tested. The six isolates were used in greenhouse variety screening trials using a millet inoculation protocol. Of the 31 varieties screened, only Armor 48-D25 was classified as moderately resistant, and plant height to the first node influenced final disease severity. The study provides short-term solutions for growers to choose less susceptible varieties for planting and lays the foundation to characterize host resistance against this important soybean pathogen.


Assuntos
Fungicidas Industriais , Glycine max , Doenças das Plantas , Rhizoctonia , Rhizoctonia/fisiologia , Rhizoctonia/genética , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/patogenicidade , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Fungicidas Industriais/farmacologia , Resistência à Doença/genética , Estrobilurinas/farmacologia , Metacrilatos/farmacologia , Variação Genética , Repetições de Microssatélites/genética , Pirazóis/farmacologia , Virulência/genética , Louisiana , Pirimidinas
9.
Plant Dis ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775674

RESUMO

Higher levels of ergot (Claviceps purpurea (Fr.)) Tul. were reported in North Dakota hard red spring wheat (HRSW) in 2018, leading to questions pertaining to management and cultivar resistance. To better understand pathogen and HRSW cultivar responses, greenhouse experiments were conducted from 2020 to 2021 to evaluate aggressiveness of nine C. purpurea isolates and ergot resistance in 21 HRSW cultivars. Results from the aggressiveness assay indicated significant cultivar by isolate interactions for total weight of sclerotia produced and ergot incidence. Mean data across all cultivar by isolate combinations suggested isolates CC-3 and IA-Tim were the most aggressive and subsequently used in ergot resistance experiments. Results from ergot resistance screening indicated none of the HRSW cultivars were immune to C. purpurea as all cultivars produced sclerotia. However, differences in ergot incidence, kernel incidence, aborted kernel incidence, total sclerotia weight, sclerotia length, and sclerotia width occurred among cultivars. Both 'ND-Frohberg' and 'TCG-Spitfire' had the lowest ergot incidence values and were among the lowest in total sclerotia weight. 'Waldron' and 'LCS-Trigger' had the highest ergot incidence and the highest total sclerotia weight. Given that most concerns with ergot occur post-harvest, we suggest two categories to describe ergot resistance: host resistance (fate of inoculation for a stigma) and logistical resistance (size characteristics of a sclerotium that influence its ability to remain with a seed lot after harvest and cleaning). This research provides a strong foundation on our understanding of HRSW resistance to ergot that will influence variety decisions in ergot-prone areas in North Dakota.

10.
Plant Dis ; : PDIS03240506RE, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38568787

RESUMO

Stem rot caused by Sclerotinia sclerotiorum is a serious and sometimes devastating disease of lupin (Lupinus spp.). A total of 236 lupin accessions from across 12 Lupinus species were screened against the prevalent S. sclerotiorum isolate MBRS-1 (pathotype 76). L. angustifolius accession 21655 and L. albus var. albus accession 20589 showed immune and "near-immune" responses, respectively. Thirteen accessions of L. angustifolius, three accessions each of L. albus and L. albus var. albus, and a single accession each of L. albus var. graecus, L. mutabilis, L. palaestinus, and L. pilosus (totaling ∼4%) showed a highly resistant (HR) response. A further 19 accessions of L. angustifolius, 2 accessions each of L. albus and L. pilosus, and a single accession of L. mutabilis (totaling ∼10%) showed a resistant (R) response. The reactions of 16 (15 L. angustifolius, 1 L. digitatus) of these 236 accessions were also compared with their reactions to a different isolate, Walkaway-3 (WW-3; pathotype 10). Against this isolate, five L. angustifolius accessions showed an HR response and four showed an R response, and the L. digitatus accession showed a moderate resistance response. Overall, isolate WW-3 caused significantly (P < 0.05) smaller lesions than MBRS-1 across tested accessions in common. In addition, 328 plants in a "wild" naturalized field population of L. cosentinii were screened in situ in the field against isolate MBRS-1. Five (∼1.5%) of the 328 plants of wild lupin showed an immune response, 63 (∼19%) showed an HR response, and 146 (∼45%) showed an R response. We believe this is the first examination of diverse Lupinus spp. germplasm responses to a prevalent pathotype of S. sclerotiorum. Lupin genotypes exhibiting high-level resistance to Sclerotinia stem rot identified in this study can be used as parental lines for crosses in lupin breeding programs and/or directly as improved cultivars to reduce the adverse impact of this disease on lupin crops.

11.
Plant Dis ; 108(7): 2170-2180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38506911

RESUMO

Verticillium wilt, caused by Verticillium dahliae, is one of the most devastating soilborne diseases of lettuce (Lactuca sativa L.). There are three races of V. dahliae, and each race has been characterized by markers representing race-specific effectors. Race 1 is differentiated by the presence of the functional secretory Ave1 effector. Similarly, races 2 and 3 are differentiated by effectors VdR2e and VdR3e, respectively. Although the presence of race 1 in coastal California was well established, the presence of effector-based races 2 and 3 was uncertain. This study therefore focused on characterizing 727 isolates collected from 142 ranches of symptomatic lettuce and other crops from coastal California. Based on this evaluation, 523 isolates were designated as race 1, 20 isolates as race 2, 23 isolates as race 3, and 17 as race undefined. Isolates representing other Verticillium species totaled 110, and 34 were non-Verticillium fungal species. Because the use of resistant cultivars is a key strategy to manage this disease, we evaluated 48 lettuce germplasm lines and 1 endive (Cichorium endivia L.) line, comprising commercial cultivars and breeding lines, including the race 1-resistant heirloom cultivar La Brillante and the susceptible cultivar Salinas as controls. Resistance against races 1, 2, and 3 along with VdLs17, a virulent isolate of V. dahliae from lettuce that is currently not assigned to a race, was evaluated in replicated greenhouse experiments. Two crisphead lettuce lines, HL28 and HL29, exhibited resistance against race 1 and a partial resistance against race 2, whereas all other lines were highly susceptible to races 1 and 2 and VdLs17. The majority of lines exhibited higher resistance to race 3 relative to the other two races. This study documents the current distribution of the different races in coastal California. In addition, the sources of resistance currently being developed should be effective or partially effective against these races for targeted deployment as soon as they are available.


Assuntos
Ascomicetos , Resistência à Doença , Lactuca , Doenças das Plantas , Lactuca/microbiologia , California , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Ascomicetos/genética , Ascomicetos/fisiologia , Verticillium
12.
Exp Appl Acarol ; 93(1): 71-79, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811383

RESUMO

The aim of this work was to analyze the R. microplus (Canestrini, 1888) infestation in two bovine herds with different degrees of natural resistance (i.e., Hereford and Braford) to ticks subjected to an identical chemical treatment scheme to ticks at the same farm, to demonstrate the impact on tick control of the incorporation of a more resistant bovine breed. Two groups of ten Hereford and Braford cows each were subjected to eleven chemical treatments between August 2022 and October 2023 (four fluazuron, two fipronil 1%, one ivermectin 3.15% and four immersion in a dipping vat with a combination of cypermethrin 10% and ethion 40%). Tick population was shown to be susceptible to ivermectin, fluazuron and the mix cypermethrin 10%-ethion 40% and resistant to fipronil according to in vitro tests. Tick infestation was significantly greater in the Hereford cows than in the Braford cows. Tick infestation in both Hereford and Braford breeds was similar when treatment with functional drugs was applied, but when a block of the treatments was done with drugs with decreased functionality due to resistance (i.e. fipronil), treatment failure was manifested more strongly in the most susceptible breed. The incorporation of cattle breeds with moderate or high resistance to R. microplus is instrumental to optimize the efficacy and sustainability of chemical control of ticks in a scenario where resistance to one or more chemical groups is almost ubiquitous, because it favors the biological control of this parasite.


Assuntos
Acaricidas , Doenças dos Bovinos , Pirazóis , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/fisiologia , Rhipicephalus/efeitos dos fármacos , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Acaricidas/farmacologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/tratamento farmacológico , Feminino , Pirazóis/farmacologia , Ivermectina/farmacologia , Compostos de Fenilureia/farmacologia , Controle de Ácaros e Carrapatos , Piretrinas/farmacologia
13.
J Nematol ; 56(1): 20240014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650603

RESUMO

The reniform nematode, Rotylenchulus reniformis, is a major yield-limiting pest of upland cotton (Gossypium hirsutum) in the United States that has been steadily increasing in incidence in many states. Reniform nematode-resistant cotton cultivars have recently become commercially available for cotton producers; however, few field trials have evaluated their efficacy as a nematode management tool. The aim of this study was to evaluate reniform nematode population development, plant growth, and seed cotton yield of reniform nematode-resistant cotton cultivars in two nematode-infested fields in Louisiana. Replicated small-plot field trials were conducted in St. Joseph, LA (NERS field) and Winnsboro, LA (MRRS field) during the 2022 and 2023 growing seasons. In 2022, cultivars evaluated included: (1) DP 1646 B2XF (susceptible/tolerant), (2) DP 2141NR B3XF (resistant), (3) PHY 332 W3FE (resistant), (4) PHY 411 W3FE (resistant), and (5) PHY 443 W3FE (resistant). In 2023, an additional susceptible cotton cultivar, PHY 340 W3FE, was also included. All nematode-resistant cotton cultivars evaluated provided suppression of reniform nematode population development relative to that of the susceptible cotton cultivars, with suppression of nematode soil population densities at harvest ranging from 49 - 81% relative to DP 1646 B2XF. The resistant cultivar PHY 411 W3FE provided the most consistent suppression of reniform nematode population development, reducing reniform nematode soil population densities at harvest in both field locations and both trial years. In contrast, DP 2141NR B3XF only reduced soil population densities at harvest in the NERS field in 2023. Despite relatively consistent nematode suppression and improvements in plant vigor ratings and canopy coverage associated with the resistant cotton cultivars, a yield increase was only observed with PHY 332 W3FE and PHY 411 W3FE planted at the NERS field in 2023. Despite strong resistance to reniform nematode in the evaluated cotton cultivars, nematode soil population densities still increased during the growing season in plots planted with resistant cotton cultivars, emphasizing the need for additional management tactics to use alongside host resistance. This study indicates that new reniform nematode-resistant cotton cultivars show promising potential to reduce nematode population development during the growing season in Louisiana.

14.
J Infect Dis ; 227(5): 714-719, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637125

RESUMO

Human immunodeficiency virus 1 (HIV-1) exposed seronegative (HESN) individuals may have unique characteristics that alter susceptibility to HIV-1 infection. However, identifying truly exposed HESN is challenging. We utilized stored data and biospecimens from HIV-1 serodifferent couple cohorts, in which couples' HIV-1 exposures were quantified based on unprotected sex frequency and viral load of the partner with HIV-1. We compared peripheral blood gene expression between 15 HESN and 18 seroconverters prior to infection. We found PTPRC (encoding CD45 antigen) and interferon-response pathways had significantly higher expression among individuals who went on to become seropositive and thus may be a signature for increased acquisition risk.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Interferons/genética , Regulação para Cima , Antígenos Comuns de Leucócito
15.
Mol Plant Microbe Interact ; 36(9): 584-591, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245238

RESUMO

Magnaporthe oryzae, a devastating pathogen of finger millet (Eleusine coracana), secretes effector molecules during infection to manipulate host immunity. This study determined the presence of avirulence effector genes PWL1 and PWL2 in 221 Eleusine blast isolates from eastern Africa. Most Ethiopian isolates carried both PWL1 and PWL2. Kenyan and Ugandan isolates largely lacked both genes, and Tanzanian isolates carried either PWL1 or lacked both. The roles of PWL1 and PWL2 towards pathogenicity on alternative chloridoid hosts, including weeping lovegrass (Eragrostis curvula), were also investigated. PWL1 and PWL2 were cloned from Ethiopian isolate E22 and were transformed separately into Ugandan isolate U34, which lacked both genes. Resulting transformants harboring either gene gained varying degrees of avirulence on Eragrostis curvula but remained virulent on finger millet. Strains carrying one or both PWL1 and PWL2 infected the chloridoid species Sporobolus phyllotrichus and Eleusine tristachya, indicating the absence of cognate resistance (R) genes for PWL1 and PWL2 in these species. Other chloridoid grasses, however, were fully resistant, regardless of the presence of one or both PWL1 and PWL2, suggesting the presence of effective R genes against PWL and other effectors. Partial resistance in some Eragrostis curvula accessions to some blast isolates lacking PWL1 and PWL2 also indicated the presence of other interactions between fungal avirulence (AVR) genes and host resistance (R) genes. Related chloridoid species thus harbor resistance genes that could be useful to improve finger millet for blast resistance. Conversely, loss of AVR genes in the fungus could expand its host range, as demonstrated by the susceptibility of Eragrostis curvula to finger millet blast isolates that had lost PWL1 and PWL2. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

16.
New Phytol ; 238(4): 1546-1561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772855

RESUMO

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal pathogen of wheat that can rapidly evolve to defeat wheat powdery mildew (Pm) resistance genes. Despite periodic regional deployment of the Pm1a resistance gene in US wheat production, Bgt strains that overcome Pm1a have been notably nonpersistent in the United States, while on other continents, they are more widely established. A genome-wide association study (GWAS) was conducted to map sequence variants associated with Pm1a virulence in 216 Bgt isolates from six countries, including the United States. A virulence variant apparently unique to Bgt isolates from the United States was detected in the previously mapped gene AvrPm1a (BgtE-5612) on Bgt chromosome 6; an in vitro growth assay suggested no fitness reduction associated with this variant. A gene on Bgt chromosome 8, Bgt-51526, was shown to function as a second determinant of Pm1a virulence, and despite < 30% amino acid identity, BGT-51526 and BGTE-5612 were predicted to share > 85% of their secondary structure. A co-expression study in Nicotiana benthamiana showed that BGTE-5612 and BGT-51526 each produce a PM1A-dependent hypersensitive response. More than one member of a B. graminis effector family can be recognized by a single wheat immune receptor, and a two-gene model is necessary to explain virulence to Pm1a.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
17.
Arch Insect Biochem Physiol ; 112(3): e21986, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36453553

RESUMO

The present study explores the compatible interaction between Arabidopsis thaliana and Myzus persicae to reduce host resistance from the previous aphid herbivore-mediated priming. The resumption of host resistance from the "reduced host resistance" was also recorded in due time when aphid herbivore was removed from leaf foliage. The vascular sap, isolated from the midpoint timing from the "reduced host resistance" to the "resumed host resistance" phase resolved in gas chromatography-mass spectrometry (GC-MS) analysis that identified an enrichment of dodecanoic acid (DA), an antibacterial metabolite and a saturated medium-chain fatty acid with a 12-carbon backbone. DA infiltration into leaf foliage revealed a significant reduction of aphid clonal proliferation on leaf foliage with concomitant reduction of the vascular microbiota titer as well as aphid body. The "resumed host resistance" from "reduced host resistance" also showed a comparable microbiota titer in comparison to control but the "reduced host resistance" evidenced a significant higher microbiota titer which was correlated with an enhanced aphid clonal proliferation on the leaf foliage. The DA infiltrated leaf foliage had no effect on total vascular sap ingestion by the aphid herbivore but induced RNA level of GUS expression under the control of promoter of pad-4, mpl-1, and sag-13. A similar pattern of gus expression was recorded from aphid herbivore. Thus, DA mediates aphid resistance toward aphid clonal proliferation in the host plant by manipulating vascular and aphid body microbiota titer.


Assuntos
Afídeos , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Láuricos/metabolismo , Herbivoria
18.
Phytopathology ; 113(11): 2103-2109, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36399026

RESUMO

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has increased in both prevalence and severity in the major hard red spring wheat (HRSW)-producing state North Dakota. The disease is readily observed after flag leaf emergence and can quickly lead to defoliation and severe yield loss. The objectives of this research were to document the prevalence and incidence of BLS in North Dakota and provide estimations of yield and economic losses. Trained field scouts determined the incidence and prevalence of BLS in ND on HRSW plants between Feekes growth stage (FGS) 8 and FGS 11.2 from 2015 to 2021, and data were used to determine BLS-affected hectares. Yield data in combination with BLS ratings were obtained from HRSW performance trials to estimate the impact of BLS on yield. The combination of variety identity, hectarage data, BLS-affected hectarage estimates, and yield loss estimates was used to estimate economic losses from BLS in 2019 and 2020. Our data suggest that BLS-affected hectares ranged from 747 to 141,680 between 2015 and 2021. Yield loss was observed at multiple HRSW performance trial locations, with estimated yield losses as high as 60% on susceptible varieties. The amount of BLS-affected hectares was the highest in 2019 and 2020, and direct economic losses for North Dakota HRSW producers were estimated to be as high as $4.7 and $8.0 million, respectively. These data highlight the importance of BLS in HRSW and the need to procure resources for breeding efforts and grower education on management of BLS.


Assuntos
Doenças das Plantas , Triticum , North Dakota , Triticum/microbiologia , Doenças das Plantas/microbiologia , Melhoramento Vegetal
19.
Plant Dis ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627809

RESUMO

Widespread use of tomato cultivars with the Sw-5 resistance gene has led to the emergence of resistance-breaking (RB) strains of tomato spotted wilt virus across the globe. In June of 2022, tomato spotted wilt (TSW) symptoms were observed at two farms (A and B, within 15 miles of each other) in Rowan County, NC on several commercial TSW resistant tomato cultivars (all heterozygous for the Sw-5 gene). At farm A, ~10% of plants had symptomatic foliage with ~30% of fruit with symptoms, while at farm B, up to 50% of plants had symptomatic foliage with ~80% of fruit with symptoms. Visual symptoms included stunting, severe leaf curling and bronzing, necrotic lesions on leaves, petioles and stems, and concentric ring spots on fruit (Supplementary Fig. 1). TSWV ImmunoStrips (AgDia, Elkhart, IN) and reverse-transcription (RT)-PCR with NSm primers (di Rienzo et al 2018) confirmed the presence of TSWV in 12 symptomatic plants sampled across the two farms. Primers designed to detect Impatiens necrotic spot virus, groundnut ringspot virus, tomato chlorotic spot virus, tomato chlorosis virus, alfalfa mosaic virus, and tomato necrotic streak virus (ilarvirus, Badillo et al., 2016) failed to generate amplicons of the expected size from cDNA generated from these field samples. The amplicons from full-length NSm cDNA were sequenced from independent, single-leaflet isolates from the TSWV-positive plants (three from farm A, nine from farm B) with the expectation of finding an amino acid (aa) substitution associated with the Sw-5 RB phenotype identified previously in CA (C118Y, Batuman et al. 2017) or Spain (C118Y and T120N, Lopez et al. 2011). All three nucleotide sequences from farm A contained the NSm C118Y substitution reported in CA. All three sequences were 99% identical (including the C118Y mutation) to NCBI GenBank accession KU179600.1, a TSWV isolate collected from GA in 2014 with no cultivar information reported. The nine nucleotide sequences from farm B contained neither of the two previously reported aa substitutions associated with the RB phenotype. Instead, all contained a D122G substitution within a conserved region of the TSWV NSm protein reported to be involved in direct interaction with the Sw-5 protein (Zhu et al 2017). Likewise, Huang et al (2021) generated a D122A mutation in TSWV-NSm, resulting in failure to elicit a Sw-5 mediated hypersensitive response. Three NSm sequences retrieved from GenBank contained the D122G substitution (AY848921.1, HM015516.1, KU179582.1), however, this mutation was not implicated directly with RB phenotypes (Ciuffo et al., 2005; Lopez et al., 2011; Marshall, 2016). The RB phenotype was confirmed with the NC variants on 'Mountain Merit' (Sw-5) by two means of virus inoculation: mechanical, rub-inoculation with extracted sap from infected plants, and thrips transmission assays with lab colony-maintained, Frankliniella occidentalis, the western flower thrips. Symptomatic leaf tissue obtained from these inoculation assays tested positive for TSWV by DAS-ELISA (AgDia, Elkhart, IN) and RT-PCR with NSm primers, providing definitive evidence of the occurrence of RB-TSWV at both farms, and subsequent sequencing confirmed the C118Y and D122G substitutions. This report warrants further investigation of the putative origins, prevalence and epidemiological implications of RB-TSWV variants in NC tomato production, and the development of new sources of resistance to TSWV.

20.
Plant Dis ; 107(7): 2126-2132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36548923

RESUMO

Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.


Assuntos
Citrullus , Resistência à Doença , Tylenchoidea , Animais , Estudo de Associação Genômica Ampla , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA