Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 940766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046021

RESUMO

Diverse adaptations to the challenging deep sea environment are expected to be found across all deep sea organisms. Scale worms Branchipolynoe pettiboneae are believed to adapt to the deep sea environment by parasitizing deep sea mussels; this biotic interaction is one of most known in the deep sea chemosynthetic ecosystem. However, the mechanisms underlying the effects of scale worm parasitism on hosts are unclear. Previous studies have revealed that the microbiota plays an important role in host adaptability. Here, we compared gill-microbiota, gene expression and host-microorganism interactions in a group of deep sea mussels (Gigantidas haimaensis) parasitized by scale worm (PA group) and a no parasitic control group (NPA group). The symbiotic microorganism diversity of the PA group significantly decreased than NPA group, while the relative abundance of chemoautotrophic symbiotic bacteria that provide the host with organic carbon compounds significantly increased in PA. Interestingly, RNA-seq revealed that G. haimaensis hosts responded to B. pettiboneaei parasitism through significant upregulation of protein and lipid anabolism related genes, and that this parasitism may enhance host mussel nutrient anabolism but inhibit the host's ability to absorb nutrients, thus potentially helping the parasite obtain nutrients from the host. In an integrated analysis of the interactions between changes in the microbiota and host gene dysregulation, we found an agreement between the microbiota and transcriptomic responses to B. pettiboneaei parasitism. Together, our findings provide new insights into the effects of parasite scale worms on changes in symbiotic bacteria and gene expression in deep sea mussel hosts. We explored the potential role of host-microorganism interactions between scale worms and deep sea mussels, and revealed the mechanisms through which scale worm parasitism affects hosts in deep sea chemosynthetic ecosystem.

2.
3.
Front Immunol ; 10: 369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894858

RESUMO

The gut microbiome of animals consists of diverse microorganisms that include both prokaryotes and eukaryotes. Complex interactions occur among these inhabitants, as well as with the immune system of the host, and profoundly influence the overall health of both the host and its microbial symbionts. Despite the enormous importance for the host to regulate its gut microbiome, the extent to which animals generate immune-related molecules with the capacity to directly influence polymicrobial interactions remains unclear. The urochordate, Ciona robusta, is a model organism that has been adapted to experimental studies of host/microbiome interactions. Ciona variable-region containing chitin-binding proteins (VCBPs) are innate immune effectors, composed of immunoglobulin (Ig) variable regions and a chitin-binding domain (CBD) and are expressed in high abundance in the gut. It was previously shown that VCBP-C binds bacteria and influences both phagocytosis by granular amoebocytes and biofilm formation via its Ig domains. We show here that the CBD of VCBP-C independently recognizes chitin molecules present in the cell walls, sporangia (spore-forming bodies), and spores of a diverse set of filamentous fungi isolated from the gut of Ciona. To our knowledge, this is the first description of a secreted Ig-containing immune molecule with the capacity to directly promote transkingdom interactions through simultaneous binding by independent structural domains and could have broad implications in modulating the establishment, succession, and homeostasis of gut microbiomes.


Assuntos
Bactérias/imunologia , Fungos/imunologia , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Animais , Bactérias/metabolismo , Quitina/química , Quitina/metabolismo , Imunofluorescência , Fungos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Fatores Imunológicos/sangue , Fatores Imunológicos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
4.
J Microbiol Methods ; 138: 82-92, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26775287

RESUMO

Laser microdissection is a method that allows for the isolation of homogenous cell populations from their native niches in tissues for downstream molecular assays. This method is widely used for genomic analysis, gene expression profiling and proteomic and metabolite assays in various fields of biology, but it remains an uncommon approach in microbiological research. In spite of the limited number of publications, laser microdissection was shown to be an extremely useful method for studying host-microorganism interactions in animals and plants, investigating bacteria within biofilms, identifying uncultivated bacteria and performing single prokaryotic cell analysis. The current paper describes the methodological aspects of commercially available laser microdissection instruments and representative examples that demonstrate the advantages of this method for resolving a variety of issues in microbiology.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Microdissecção e Captura a Laser/métodos , Análise de Célula Única/métodos , Animais , Perfilação da Expressão Gênica/métodos , Microdissecção e Captura a Laser/instrumentação , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA