Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Theor Biol ; 590: 111855, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-38789077

RESUMO

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations migrating between 2 patches to elucidate features of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches can occur alternatively (out of phase) at low migration between patches whereas host outbreaks always occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across a large range of parameters across different modelling approaches used typically to model intraspecific competition among hosts and parasitism, in the host-parasitoid literature. We give an analytical expression for the period of oscillations when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is in agreement with numerical results. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.


Assuntos
Migração Animal , Interações Hospedeiro-Parasita , Modelos Biológicos , Interações Hospedeiro-Parasita/fisiologia , Animais , Migração Animal/fisiologia , Insetos/parasitologia , Dinâmica Populacional , Ecossistema
2.
J Therm Biol ; 123: 103930, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39116624

RESUMO

Thermal limits are often used as proxies to assess the vulnerability of ectotherms to environmental change. While meta-analyses point out a relatively low plasticity of heat limits and a large interspecific variability, only few studies have compared the heat tolerance of interacting species. The present study focuses on the thermal limits, and their plasticity (heat hardening), of three species co-occurring in Western Africa: two ectoparasitoid species, Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae) and Eupelmus vuilleti (Crawford) (Hymenoptera: Eupelmidae), and their common host, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). The investigation delves into the Critical Thermal Maximum (CTmax), representing the upper tolerance limit, to understand how these species may cope with extreme thermal events. The CTmax of all three species appeared similarly high, hovering around 46.5 °C, exceeding the global mean CTmax observed in insects by 3.5 °C. Short-term exposure to moderate heat stress showed no impact on CTmax, suggesting a potential lack of heat hardening in these species. Therefore, we emphasized the similarity of heat tolerance in these interacting species, potentially stemming from both evolutionary adaptations to high temperatures during development and the stable and similar microclimate experienced by the three species over the years. While the high thermal tolerance should allow these species to endure extreme temperature events, the apparent lack of plasticity raises concerns about their ability to adapt to future climate change scenarios. Overall, this research provides valuable insights into the thermal physiology of these interacting species, providing a basis for understanding their responses to climate change and potential implications for the host-parasitoid system.


Assuntos
Besouros , Interações Hospedeiro-Parasita , Termotolerância , Animais , Besouros/fisiologia , Besouros/parasitologia , Vespas/fisiologia , Especificidade da Espécie , Clima Tropical , Temperatura Alta , Himenópteros/fisiologia
3.
Glob Chang Biol ; 28(13): 4013-4026, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35426203

RESUMO

Climate change is altering the relative timing of species interactions by shifting when species first appear in communities and modifying the duration organisms spend in each developmental stage. However, community contexts, such as intraspecific competition and alternative resource species, can prolong shortened windows of availability and may mitigate the effects of phenological shifts on species interactions. Using a combination of laboratory experiments and dynamic simulations, we quantified how the effects of phenological shifts in Drosophila-parasitoid interactions differed with concurrent changes in temperature, intraspecific competition, and the presence of alternative host species. Our study confirmed that warming shortens the window of host susceptibility. However, the presence of alternative host species sustained interaction persistence across a broader range of phenological shifts than pairwise interactions by increasing the degree of temporal overlap with suitable development stages between hosts and parasitoids. Irrespective of phenological shifts, parasitism rates declined under warming due to reduced parasitoid performance, which limited the ability of community context to manage temporally mismatched interactions. These results demonstrate that the ongoing decline in insect diversity may exacerbate the effects of phenological shifts in ecological communities under future global warming temperatures.


Assuntos
Mudança Climática , Aquecimento Global , Animais , Insetos , Estações do Ano , Temperatura
4.
J Anim Ecol ; 91(2): 404-416, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800042

RESUMO

Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. We demonstrate the application and value of this method using a host-parasitoid system sampled along gradients of environmental modification. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained.


Assuntos
Ecossistema , Animais
5.
J Anim Ecol ; 91(5): 1010-1023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297500

RESUMO

Parasitism is a key factor in the population dynamics of many herbivorous insects, although its impact on host populations varies widely, for instance, along latitudinal and altitudinal gradients. Understanding the sources of geographical variation in host-parasitoid interactions is crucial for reliably predicting the future success of the interacting species under a context of global change. Here, we examine larval parasitism in the butterfly Aglais urticae in south-west Europe, where it is a mountain specialist. Larval nests were sampled over 2 years along altitudinal gradients in three Iberian mountain ranges, including the Sierra Nevada, home to its southernmost European population. Additional data on nettle condition and adult butterflies were obtained in the study areas. These data sources were used to investigate whether or not differences in parasitism rates are related to the geographical position and phenology of the host, and to the availability of the host plants. Phenological differences in the host populations between regions were related to the severity of summer drought and the corresponding differences in host plant availability. At the trailing-edge of its distribution, the butterfly's breeding season was restricted to the end of winter and spring, while in its northern Iberian range the season was prolonged until mid-summer. Although parasitism was an important source of mortality in all regions, parasitism rates and parasitoid richness were highest in the north and lowest in the south. Moreover, within a region, there was a notable increase in parasitism rates over time, which probably led to selection against an additional late summer host generation in northern regions. Conversely, the shorter breeding season in Sierra Nevada resulted in a loss of synchrony between the host and one important late season parasitoid, Sturmia bella, which may partly explain the high density of this butterfly species at the trailing-edge of its range. Our results support the key role of host phenology in accounting for differences in parasitism rates between populations. They also provide insights into how climate through host plant availability affects host phenology and, ultimately, the impact of parasitism on host populations.


Assuntos
Borboletas , Herbivoria , Animais , Larva , Melhoramento Vegetal , Plantas
6.
J Chem Ecol ; 48(4): 370-383, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35257255

RESUMO

Kairomones are semiochemicals that are emitted by an organism and which mediate interspecific interaction that is of benefit to an organism of another species that receives these chemical substances. Parasitoids find and recognize their hosts through eavesdropping on the kairomones emitted from the by-products or the body of the host. Hemipteran insect pests feed on plant sap and excrete the digested plant materials as honeydew. Honeydew serves as a nutritional food source for parasitoids and a medium for micro-organisms whose activity induces the release of volatiles exploited by parasitoids for host location. The parasitoid Encarsia formosa preferentially parasitizes its host, the greenhouse whitefly, Trialeurodes vaporariorum, on tomato Solanum lycopersicum, but little is known about the chemicals that mediate these interactions. We investigated the olfactory responses of the parasitoid E. formosa to odours from honeydew and nymphs of T. vaporariorum in a Y-tube olfactometer. Arrestment behaviour of the parasitoid to honeydew and nymph extracts, as well as to synthetic hydrocarbons, was also observed in Petri-dish bioassays. We found that T. vaporariorum honeydew volatiles attracted the parasitoid E. formosa but odours from the whitefly nymphs did not. We also found that the parasitoid spent more time searching on areas treated with extracts of honeydew and nymphs than on untreated areas. Gas-chromatography-mass spectrometric analysis revealed that the honeydew volatiles contained compounds such as (Z)-3-hexenol, δ-3-carene, 3-octanone, α-phellandrene, methyl salicylate, ß-ocimene, ß-myrcene, and (E)-ß-caryophyllene which are known to be attractive to E. formosa. The cuticular extracts of the nymphs predominantly contained alkanes, alkenes, and esters. Among the alkanes, synthetic nonacosane arrested the parasitoid. Our findings are discussed in relation to how the parasitoid E. formosa uses these chemicals to locate its host, T. vaporariorum.


Assuntos
Hemípteros , Himenópteros , Solanum lycopersicum , Vespas , Alcanos , Animais , Sinais (Psicologia) , Interações Hospedeiro-Parasita , Ninfa , Feromônios , Extratos Vegetais , Taiwan , Vespas/fisiologia
7.
J Theor Biol ; 531: 110897, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506808

RESUMO

We model the population dynamics of two host species attacked by a common parasitoid using a discrete-time formalism that captures their population densities from year to year. It is well known starting from the seminal work of Nicholson and Bailey that a constant parasitoid attack rate leads to an unstable host-parasitoid interaction. However, a Type III functional response, where the parasitoid attack rate accelerates with increasing host density stabilizes the population dynamics. We first consider a scenario where both host species are attacked by a parasitoid with the same Type III functional response. Our results show that sufficient fast acceleration of the parasitoid attack rate stabilizes the population dynamics of all three species. For two symmetric host species, the extent of acceleration needed to stabilize the three-species equilibrium is exactly the same as that needed for a single host-parasitoid interaction. However, asymmetry can lead to scenarios where the removal of a host species from a stable interaction destabilizes the interaction between the remaining host species and the parasitoid. Next, we consider a situation where one of the host species is attacked at a constant rate (i.e., Type I functional response), and the other species is attacked via a Type III functional response. We identify parameter regimes where a Type III functional response to just one of the host species stabilizes the three species interaction. In summary, our results show that a generalist parasitoid with a Type III functional response to one or many host species can play a key role in stabilizing population dynamics of host-parasitoid communities in apparent competition.


Assuntos
Interações Hospedeiro-Parasita , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional
8.
Arch Insect Biochem Physiol ; 106(1): e21746, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33026670

RESUMO

The ability of Habrobracon brevicornis venom to elevate the nutritional suitability of a host by affecting the host larvae fat body condition was studied. To understand whether H. brevicornis crude venom impacts the host biochemical profile, the concentrations of total lipids and main sugars in the host larvae lymph were analyzed. All measurements were carried out during the first 3 days after envenomation. A significant increase in the lipid level was fixed only on the second day after envenomation. A significant increase in the total trehalose count was detected during all 3 days, while a significant increase in glucose concentration was noted only on the first day. Well-observed disruptions were fixed in thin and semithin sections of the G. mellonella larval fat body starting from the second day after envenomation. Significant increases in both phospholipase A2 and C enzyme activity as well as acid proteases were detected in the wax moth fat body after envenomation during all experimental times. At the same time, imbalances in the antioxidant system, including changes in the activities of superoxide dismutase, peroxidases, catalase, and glutathione-S-transferase, were detected. The reliable increase in the expression of the gene encoding Hsp70 was fixed both for 24 and 48 h after envenomation, while a reliable increase in the expression of the gene encoding inhibitor of apoptosis protein was detected only 24 h after wax moth larvae envenomation. Considering the absence of DNA fragmentation, the imbalance in the "ROS/antioxidants" system, and the increased activity of phospholipases and acid proteases in the fat body cells from envenomated wax moth larvae, we can hypothesize that the fat body disruption occurs in a necrotic manner. The results of the work expand the knowledge about the biochemical aspects of interaction between ectoparasitoids and their hosts.


Assuntos
Interações Hospedeiro-Parasita , Mariposas/metabolismo , Vespas/metabolismo , Animais , Corpo Adiposo/metabolismo , Hemolinfa/metabolismo , Himenópteros , Larva/metabolismo , Lepidópteros , Peçonhas/metabolismo
9.
BMC Genomics ; 21(1): 34, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924169

RESUMO

BACKGROUND: Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and "omics" level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). RESULTS: Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. CONCLUSION: The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.


Assuntos
Venenos de Vespas/metabolismo , Vespas/metabolismo , Animais , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteômica , Transcriptoma/genética , Venenos de Vespas/genética , Vespas/genética
10.
Glob Chang Biol ; 26(11): 6276-6295, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32914511

RESUMO

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.


Assuntos
Ecossistema , Herbivoria , Animais , Regiões Árticas , Groenlândia , Interações Hospedeiro-Parasita , Larva
11.
Ecol Lett ; 22(9): 1367-1377, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207056

RESUMO

In network ecology, landscape-scale processes are often overlooked, yet there is increasing evidence that species and interactions spill over between habitats, calling for further study of interhabitat dependencies. Here, we investigate how species connect a mosaic of habitats based on the spatial variation of their mutualistic and antagonistic interactions using two multilayer networks, combining pollination, herbivory and parasitism in the UK and New Zealand. Developing novel methods of network analysis for landscape-scale ecological networks, we discovered that few plant and pollinator species acted as connectors or hubs, both within and among habitats, whereas herbivores and parasitoids typically have more peripheral network roles. Insect species' roles depend on factors other than just the abundance of taxa in the lower trophic level, exemplified by larger Hymenoptera connecting networks of different habitats and insects relying on different resources across different habitats. Our findings provide a broader perspective for landscape-scale management and ecological community conservation.


Assuntos
Ecossistema , Herbivoria , Insetos , Polinização , Animais , Nova Zelândia , Reino Unido
12.
J Anim Ecol ; 87(5): 1440-1451, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928757

RESUMO

Facultative bacterial endosymbionts can protect their aphid hosts from natural enemies such as hymenopteran parasitoids. As such, they have the capability to modulate interactions between aphids, parasitoids and hyperparasitoids. However, the magnitude of these effects in natural aphid populations and their associated parasitoid communities is currently unknown. Moreover, environmental factors such as plant fertilization and landscape complexity are known to affect aphid-parasitoid interactions but it remains unclear how such environmental factors affect the interplay between aphids, parasitoids and endosymbionts. Here, we tested whether facultative endosymbionts confer protection to parasitoids in natural populations of the English grain aphid, Sitobion avenae, and if this is affected by plant fertilization and landscape complexity. Furthermore, we examined whether the effects of facultative endosymbionts can cascade up to the hyperparasitoid level and increase primary-hyperparasitoid food web specialization. Living aphids and mummies were collected in fertilized and unfertilized plots within 13 wheat fields in Central Germany. We assessed the occurrence of primary parasitoid, hyperparasitoid and endosymbiont species in aphids and mummies using a newly established molecular approach. Facultative endosymbiont infection rates were high across fields (~80%), independent of whether aphids were parasitized or unparasitized. Aphid mummies exhibited a significantly lower share of facultative endosymbiont infection (~38%). These findings suggest that facultative endosymbionts do not affect parasitoid oviposition behaviour, but decrease parasitoid survival in the host. Facultative endosymbiont infection rates were lower in mummies collected from fertilized compared to unfertilized plants, indicating that plant fertilization boosts the facultative endosymbiont protective effect. Furthermore, we found strong evidence for species-specific and negative cascading effects of facultative endosymbionts on primary and hyperparasitoids, respectively. Facultative endosymbionts impacted parasitoid assemblages and increased the specialization of primary-hyperparasitoid food webs: these effects were independent from and much stronger than other environmental factors. The current findings strongly suggest that facultative endosymbionts act as a driving force in aphid-parasitoid-hyperparasitoid networks: they shape insect community composition at different trophic levels and modulate, directly and indirectly, the interactions between aphids, parasitoids and their environment.


Assuntos
Afídeos , Vespas , Animais , Feminino , Cadeia Alimentar , Alemanha , Interações Hospedeiro-Parasita , Oviposição , Simbiose
13.
J Anim Ecol ; 87(3): 801-812, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417993

RESUMO

Within natural communities, different taxa display different dynamics in time. Why this is the case we do not fully know. This thwarts our ability to predict changes in community structure, which is important for both the conservation of rare species in natural communities and for the prediction of pest outbreaks in agriculture. Species sharing phylogeny, natural enemies and/or life-history traits have been hypothesized to share similar temporal dynamics. We operationalized these concepts into testing whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among herbivorous community members. Focusing on two similar datasets from different geographical regions (Finland and Japan), we used asymmetric eigenvector maps as temporal variables to characterize species- and community-level dynamics of specialist insect herbivores on oak (Quercus). We then assessed whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among taxa. Species-specific temporal dynamics varied widely, ranging from directional decline or increase to more complex patterns. Phylogeny was a clear predictor of similarity in temporal dynamics at the Finnish site, whereas for the Japanese site, the data were uninformative regarding a phylogenetic imprint. Voltinism, feeding guild and parasitoid overlap explained little variation at either location. Despite the rapid temporal dynamics observed at the level of individual species, these changes did not translate into any consistent temporal changes at the community level in either Finland or Japan. Overall, our findings offer no direct support for the notion that species sharing natural enemies and/or life-history traits would be characterized by similar temporal dynamics, but reveal a strong imprint of phylogenetic relatedness. As this phylogenetic signal cannot be attributed to guild, voltinism or parasitoids, it will likely derive from shared microhabitat, microclimate, anatomy, physiology or behaviour. This has important implications for predicting insect outbreaks and for informing insect conservation. We hope that future studies will assess the generality of our findings across plant-feeding insect communities and beyond, and establish the more precise mechanism(s) underlying the phylogenetic imprint.


Assuntos
Herbivoria , Insetos/fisiologia , Características de História de Vida , Filogenia , Quercus , Animais , Finlândia , Insetos/classificação , Japão
14.
Mol Ecol ; 25(4): 882-94, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26876233

RESUMO

The structure of populations across landscapes influences the dynamics of their interactions with other species. Understanding the geographic structure of populations can thus shed light on the potential for interacting species to co-evolve. Host-parasitoid interactions are widespread in nature and also represent a significant force in the evolution of plant-insect interactions. However, there have been few comparisons of population structure between an insect host and its parasitoid. We used microsatellite markers to analyse the population genetic structure of Pleistodontes imperialis sp. 1, a fig-pollinating wasp of Port Jackson fig (Ficus rubiginosa), and its main parasitoid, Sycoscapter sp. A, in eastern Australia. Besides exploring this host-parasitoid system, our study also constitutes, to our knowledge, the first study of population structure in a nonpollinating fig wasp species. We collected matched samples of pollinators and parasitoids at several sites in two regions separated by up to 2000 km. We found that pollinators occupying the two regions represent distinct populations, but, in contrast, parasitoids formed a single population across the wide geographic range sampled. We observed genetic isolation by distance for each species, but found consistently lower FST and RST values between sites for parasitoids compared with pollinators. Previous studies have indicated that pollinators of monoecious figs can disperse over very long distances, and we provide the first genetic evidence that their parasitoids may disperse as far, if not farther. The contrasting geographic population structures of host and parasitoid highlight the potential for geographic mosaics in this important symbiotic system.


Assuntos
Distribuição Animal , Ficus , Genética Populacional , Vespas/genética , Vespas/parasitologia , Animais , Austrália , Teorema de Bayes , Variação Genética , Genótipo , Geografia , Repetições de Microssatélites , Polinização , Análise de Sequência de DNA
15.
J Anim Ecol ; 85(6): 1595-1604, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27476800

RESUMO

Host-parasitoid systems are characterized by a continuous development of new defence strategies in hosts and counter-defence mechanisms in parasitoids. This co-evolutionary arms race makes host-parasitoid systems excellent for understanding trade-offs in host use caused by evolutionary changes in host immune responses and parasitoid virulence. However, knowledge obtained from natural host-parasitoid systems on such trade-offs is still limited. In this study, the aim was to examine trade-offs in parasitoid virulence in Asecodes parviclava (Hymenoptera: Eulophidae) when attacking three closely related beetles: Galerucella pusilla, Galerucella calmariensis and Galerucella tenella (Coleoptera: Chrysomelidae). A second aim was to examine whether geographic variation in parasitoid infectivity or host immune response could explain differences in parasitism rate between northern and southern sites. More specifically, we wanted to examine whether the capacity to infect host larvae differed depending on the previous host species of the parasitoids and if such differences were connected to differences in the induction of host immune systems. This was achieved by combining controlled parasitism experiments with cytological studies of infected larvae. Our results reveal that parasitism success in A. parviclava differs both depending on previous and current host species, with a higher virulence when attacking larvae of the same species as the previous host. Virulence was in general high for parasitoids from G. pusilla and low for parasitoids from G. calmariensis. At the same time, G. pusilla larvae had the strongest immune response and G. calmariensis the weakest. These observations were linked to changes in the larval hemocyte composition, showing changes in cell types important for the encapsulation process in individuals infected by more or less virulent parasitoids. These findings suggest ongoing evolution in parasitoid virulence and host immune response, making the system a strong candidate for further studies on host race formation and speciation.


Assuntos
Besouros/parasitologia , Interações Hospedeiro-Parasita , Vespas/fisiologia , Animais , Evolução Biológica , Besouros/imunologia , Feminino , Imunidade Inata , Larva/imunologia , Larva/parasitologia , Larva/fisiologia , Filogenia , Suécia
16.
Biodivers Data J ; 12: e118487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566889

RESUMO

We report the results of investigations 2010 through 2023 of hymenopteran parasitoids associated with gall midges in Europe. A total of 242 collections of gall midges were made, from each of which one to several parasitoid species emerged, resulting in ca. 200 recorded parasitoid species and 267 host-parasitoid interaction records. The parasitoid families involved were Eulophidae (63 species), Platygastridae (56 species), Torymidae (34 species), Pteromalidae (31 species), Ceraphronidae (5 species), Eupelmidae (4 species), Eurytomidae (2 species) and Encyrtidae (1 species). As many as 159 interactions are reported for the first time, significantly enlarging our knowledge of gall midge - parasitoid interactions on the species level. Even more interesting, 51 host records are for parasitoid species for which no host was previously known. Similarly, 28 species of gall midge are reported as host to named parasitoids for the first time. Additionally, 91 parasitoid records were the first for the country in question. Differences between the rearing methods applied and their suitability for recording species with contrasting life histories, are discussed.

17.
Insects ; 14(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975973

RESUMO

By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies' diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid- parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards.

18.
Front Nutr ; 9: 1006253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245483

RESUMO

The vast majority of parasitoids are capable of precise and meticulous regulation of nutrition and metabolism within the host. An important building block of life, amino acids are critical to the development of parasitoids. To date, research on how parasitoids regulate host amino acid metabolism remains limited. In this study, Aphis gossypii and its dominant parasitoid Binodoxys communis were used as a study system to explore how parasitism may change the regulation of amino acids in A. gossypii with UHPLC-MS/MS and RT-qPCR techniques. Here, for the first 8 h of parasitism the abundance of almost all amino acids in cotton aphids increased, and after 16 h most of the amino acids decreased. An amino acid of parasitic syndrome, the content of Tyr increased gradually after being parasitized. The expression of genes related to amino acid metabolism increased significantly in early stages of parasitism and then significantly decreased gradually. At the same time, the abundance of Buchnera, a cotton aphid specific symbiont increased significantly. Our comprehensive analyses reveal impacts of B. communis on the amino acid regulatory network in cotton aphid from three aspects: amino acid metabolism, gene expression, and bacterial symbionts. Therefore, this research provides an important theoretical basis for parasitoid nutritional regulation in host, which is highly significant as it may inform the artificial reproduction of parasitoids and the biological control of insect pests.

19.
Environ Entomol ; 51(5): 901-909, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35951040

RESUMO

The hemlock woolly adelgid (Adelges tsugae (Annand)) is a serious invasive pest of hemlock trees in eastern North America. Multiple biological control agents have been the focus of research aimed at pest management and conserving hemlock communities. Three promising A. tsugae specialist predators are the beetle Laricobius nigrinus (Fender) (Coleoptera: Derodontidae) and flies in the genus Leucotaraxis (Diptera: Chamaemyiidae), Leucotaraxis argenticollis (Zetterstedt), and Leucotaraxis piniperda (Malloch). However, these flies are vulnerable to parasitism by wasps in the genera Pachyneuron (Walker) (Hymenoptera: Pteromalidae) and Melanips (Walker) (Hymenoptera: Figitidae). This study explores parasitoid wasp interactions with these Leucotaraxis species in their native western North American range and potential impacts on the biological control program in the East. Leucotaraxis, La. nigrinus, and parasitoid emergences were observed from adelgid-infested foliage collected from Washington State and British Columbia in 2018, 2019, and 2020. Undescribed species of Pachyneuron and Melanips emerged from puparia as solitary parasitoids. Parasitoid emergence was positively correlated with Leucotaraxis emergence. Percent parasitism increased between February and July, with the months of June and July experiencing higher parasitoid emergence than Leucotaraxis. Differences in emergence patterns suggest that Pachyneuron may be more closely associated with Le. argenticollis as a host, and that Melanips may be associated with Le. piniperda. High parasitism in Leucotaraxis had no effect on La. nigrinus larval abundance, whereas the combined emergence of parasitoids and Leucotaraxis was positively correlated with La. nigrinus. This suggests that there is limited competition among these predators.


Assuntos
Besouros , Dípteros , Hemípteros , Cicutas (Apiáceas) , Vespas , Animais , Hemípteros/fisiologia , Dípteros/fisiologia , Agentes de Controle Biológico , Comportamento Predatório , Tsuga , Besouros/fisiologia
20.
Ecol Evol ; 12(7): e9030, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813932

RESUMO

The invasion of a novel host species can create a mismatch in host choice and offspring survival (performance) when native parasitoids attempt to exploit the invasive host without being able to circumvent its resistance mechanisms. Invasive hosts can therefore act as evolutionary trap reducing parasitoids' fitness and this may eventually lead to their extinction. Yet, escape from the trap can occur when parasitoids evolve behavioral avoidance or a physiological strategy compatible with the trap host, resulting in either host-range expansion or a complete host-shift. We developed an individual based model to investigate which conditions promote parasitoids to evolve behavioral preference that matches their performance, including host-trap avoidance, and which conditions lead to adaptations to the unsuitable hosts. The model was inspired by solitary endo-parasitoids attacking larval host stages. One important aspect of these conditions was reduced host survival during incompatible interaction, where a failed parasitization attempt by a parasitoid resulted not only in death of her offspring but also in host killing. This non-reproductive host mortality had a strong influence on the likelihood of establishment of novel host-parasitoid relationship, in some cases constraining adaptation to the trap host species. Moreover, our model revealed that host-search efficiency and genetic variation in host-preference play a key role in the likelihood that parasitoids will include the suboptimal host in their host range, or will evolve behavioral avoidance resulting in specialization and host-range conservation, respectively. Hence, invasive species might change the evolutionary trajectory of native parasitoid species, which is important for predicting biocontrol ability of native parasitoids towards novel hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA